Abstract
Training-based multispectral reconstruction can effectively recover spectral reflectance of captured objects using a trichromatic camera. However, existing methods are based on synthesized data, and the sizes of training sample set (e.g., multispectral images, reflectance targets) are usually large. In this paper, we present a spectral reconstruction approach using real measured data. To improve the efficiency and accuracy of spectral reconstruction, we propose a volume maximization method for sample optimization without any prior knowledge of light and cameras. We use heuristic global search algorithms to optimize samples and give an efficient spectral reconstruction method which is suitable for sparse sampling. Experimental results show that the proposed sample selection method outperforms other existing methods in terms of both spectral and colorimetric reconstruction errors. Moreover, the proposed reconstruction method achieves higher efficiency and accuracy due to lower sample redundancy.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agahian, F., Amirshahi, S.A., Amirshahi, S.H.: Reconstruction of reflectance spectra using weighted principal component analysis. Color Res. Appl. 33(5), 360–371 (2008)
Aharon, M., Elad, M., Bruckstein, A.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
Alvarez-Cortes, S., Kunkel, T., Masia, B.: Practical low-cost recovery of spectral power distributions. In: Computer Graphics Forum, vol. 35, pp. 166–178. Wiley (2016)
Arad, B., Ben-Shahar, O.: Sparse recovery of hyperspectral signal from natural rgb images. In: European Conference on Computer Vision, pp. 19–34. Springer (2016)
Brill, M.H.: Acquisition and reproduction of color images: colorimetric and multispectral approaches. Color Res. Appl. 27(4), 304–305 (2002)
Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 177–184. IEEE (2011)
Carroll, R., Ramamoorthi, R., Agrawala, M.: Illumination decomposition for material recoloring with consistent interreflections. In: ACM Transactions on Graphics (TOG), vol. 30, p. 43. ACM (2011)
Cheung, V., Westland, S.: Methods for optimal color selection. J. Imaging Sci. Technol. 50(5), 481–488 (2006)
Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theor. Comput. Sci. 410(47), 4801–4811 (2009)
Fu, Y., Zheng, Y., Sato, I., Sato, Y.: Exploiting spectral-spatial correlation for coded hyperspectral image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3727–3736 (2016)
Han, S., Sato, I., Okabe, T., Sato, Y.: Fast spectral reflectance recovery using dlp projector. Int. J. Comput. Vis. 110(2), 172–184 (2014)
Heikkinen, V., Cámara, C., Hirvonen, T., Penttinen, N.: Spectral imaging using consumer-level devices and kernel-based regression. JOSA A 33(6), 1095–1110 (2016)
Heikkinen, V., Jetsu, T., Parkkinen, J., Hauta-Kasari, M., Jaaskelainen, T., Lee, S.D.: Regularized learning framework in the estimation of reflectance spectra from camera responses. JOSA A 24(9), 2673–2683 (2007)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2016), vol. 35, No. 4, pp. 110:1–110:11 (2016)
Jiang, J., Liu, D., Gu, J., Süsstrunk, S.: Camera spectral sensitivity. http://www.cis.rit.edu/dxl5849/projects/camspec/
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017), vol. 36, No. 4 (2017)
Kim, S., Min, D., Ham, B., Do, M., Sohn, K.: Dasc: Robust dense descriptor for multi-modal and multi-spectral correspondence estimation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1712–1729 (2016)
Lan, Y., Wang, J., Lin, S., Gong, M., Tong, X., Guo, B.: Interactive chromaticity mapping for multispectral images. Visual Comput. 29(6–8), 773–783 (2013)
Lee, M.H., Park, H., Ryu, I., Park, J.I.: Fast model-based multispectral imaging using nonnegative principal component analysis. Opt. Lett. 37(11), 1937–1939 (2012)
Li, Y., Majumder, A., Lu, D., Gopi, M.: Content-independent multi-spectral display using superimposed projections. Comput. Graph. Forum 34(2), 337–348 (2015)
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)
Mansouri, A., Sliwa, T., Hardeberg, J.Y., Voisin, Y.: Representation and estimation of spectral reflectances using projection on pca and wavelet bases. Color Res. Appl. 33(6), 485–493 (2008)
Melanie, M.: An introduction to genetic algorithms. Cambridge, Massachusetts London, England, Fifth printing vol. 3, pp. 62–75 (1999)
Mohammadi, M., Nezamabadi, M., Berns, R.S., Taplin, L.A.: Spectral imaging target development based on hierarchical cluster analysis. In: Color and Imaging Conference, vol. 2004, pp. 59–64. Society for Imaging Science and Technology (2004)
Nalbach, O., Seidel, H.P., Ritschel, T.: Practical capture and reproduction of phosphorescent appearance. In: Computer Graphics Forum, vol. 36, pp. 409–420. Wiley (2017)
Nguyen, R.M., Prasad, D.K., Brown, M.S.: Training-based spectral reconstruction from a single rgb image. In: European Conference on Computer Vision, pp. 186–201. Springer (2014)
Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using multiplexed illumination. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)
Parkkinen, J.P., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell colors. JOSA A 6(2), 318–322 (1989)
Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993, pp. 40–44. IEEE (1993)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Shen, H.L., Yao, J.F., Li, C., Du, X., Shao, S.J., Xin, J.H.: Channel selection for multispectral color imaging using binary differential evolution. Appl. Opt. 53(4), 634–642 (2014)
Shen, H.L., Zhang, H.G., Xin, J.H., Shao, S.J.: Optimal selection of representative colors for spectral reflectance reconstruction in a multispectral imaging system. Appl. Opt. 47(13), 2494–2502 (2008)
University of Joensuu Color Group: Spectral Database. http://cs.joensuu.fi/spectral/databases/download/
Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44–B51 (2008)
Wug O.S., Brown, M.S., Pollefeys, M., Joo K.S.: Do it yourself hyperspectral imaging with everyday digital cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2461–2469 (2016)
Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)
Zhang, L., Li, B., Pan, Z., Liang, D., Kang, Y., Zhang, D., Ma, X.: A method for selecting training samples based on camera response. Laser Phys. Lett. 13(9), 095201 (2016)
Zhang, Q., Zheng, G., Zhou, D.: Comparison study of gauss, mq and tps for interpolation application. Int. J. Ind. Syst. Eng. 18(2), 185–198 (2014)
Zhang, W.F., Tang, G., Dai, D.Q., Nehorai, A.: Estimation of reflectance from camera responses by the regularized local linear model. Opt. Lett. 36(19), 3933–3935 (2011)
Acknowledgements
The work in this paper has been supported by the National Natural Science Foundation of China (Grant Nos. 61602268, 61603202, 61571247), the National Natural Science Foundation of Zhejiang Province (Nos. LY13F020050, LZ16F030001), and the K.C.Wong Magna Fund in Ningbo University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Y., Wang, C., Zhao, J. et al. Efficient spectral reconstruction using a trichromatic camera via sample optimization. Vis Comput 34, 1773–1783 (2018). https://doi.org/10.1007/s00371-017-1469-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1469-3