Abstract
Saliency detection is a popular topic for image processing recently. In this paper, we propose a simple, robust and fast salient object segmentation framework. Firstly, we develop a novel saliency map segmentation strategy, named SSG which consists of superpixel region growing, superpixel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering and iterated graph cuts (GrabCut), where DBSCAN makes similar background regions cluster as a whole, region growing groups similar regions together as much as possible, GrabCut segments salient objects accurately. Then, the proposed SSG is combined with saliency detection to abstract salient objects. Experimental results on three benchmark datasets demonstrate that the proposed method achieves the favorable performance than many recent state-of-the-art methods in terms of precision, recall, F-measure and execution time.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
http://pan.baidu.com/s/1sl8YrXN, download code: 28uq.
References
Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. Computer Vision Systems 5008, 66–75 (2010)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. pp. 1597–1604 (2009)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Epfl (2010)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07. pp. 1–8 (2007)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a survey. Eprint Arxiv 16(7), 3118 (2014)
Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2012)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: European Conference on Computer Vision, pp. 414–429 (2012)
Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: International Conference on Neural Information Processing Systems, pp. 155–162 (2005)
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: Computer Vision and Pattern Recognition, pp. 409–416 (2011)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise (1996)
Fan, J., Zeng, G., Body, M., Hacid, M.S.: Seeded region growing: an extensive and comparative study. Pattern Recognit. Lett. 26(8), 1139–1156 (2005)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)
Fu, K., Gong, C., Gu, I.Y., Yang, J.: Normalized cut-based saliency detection by adaptive multi-level region merging. IEEE Trans. Image Process. 24(12), 5671–5683 (2015)
Fu, Y., Cheng, J., Li, Z., Lu, H.: Saliency cuts: an automatic approach to object segmentation. In: International Conference on Pattern Recognition, pp. 1–4 (2008)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007)
Huo, L., Jiao, L., Wang, S., Yang, S.: Object-level saliency detection with color attributes. Pattern Recognit. 49, 162–173 (2016)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: British Machine Vision Conference (2011)
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013). https://doi.org/10.1109/CVPR.2013.271
Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)
Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383047
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353 (2011)
Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: Eleventh ACM International Conference on Multimedia, pp. 374–381 (2003)
Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Iapr International Conference on Pattern Recognition, 1994. Vol. 1—Conference A: Computer Vision and Image Processing, pp. 582–585 vol. 1 (2002)
Otsu, N., Ostu, N., Nobuyuki, O.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics 9(1), 62–66 (1979)
Ren, C.Y., Prisacariu, V.A., Reid, I.D.: gslicr slic superpixels at over 250hz. Computer Science (2015)
Rother, C., Kolmogorov, V., Blake, A.: "grabcut": interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, pp. 309–314 (2004)
Shi, J., Yan, Q., Li, X., Jia, J.: Hierarchical image saliency detection on extended cssd. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2016)
Wang, J., Jiang, H., Yuan, Z., Cheng, M.M., Hu, X., Zheng, N.: Salient object detection: a discriminative regional feature integration approach. Int. J. Comput. Vision 123(2), 251–268 (2017). https://doi.org/10.1007/s11263-016-0977-3
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: European Conference on Computer Vision, pp. 29–42 (2012)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Yildirim, G., Süsstrunk, S.: FASA: Fast, Accurate, and Size-Aware Salient Object Detection. Springer, Berlin (2015)
Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM International Conference on Multimedia, pp. 815–824 (2006)
Zhang, H., Xu, M., Zhuo, L., Havyarimana, V.: A novel optimization framework for salient object detection. Vis. Comput. 32(1), 31–41 (2016)
Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: IEEE International Conference on Computer Vision, pp. 1404–1412 (2016)
Zhang, Q., Lin, J., Li, W., Shi, Y., Cao, G.: Salient object detection via compactness and objectness cues. Vis. Comput. 1, 1–17 (2017)
Acknowledgements
This work was supported by the National Science Foundation of China (61573134, 61703155), the National Science and Technology Support Program (2015BAF13B00) and the Innovation Project of Postgraduate Student in Hunan Province, China (CX2017B108).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, X., Wang, Y., Zhu, Q. et al. SSG: superpixel segmentation and GrabCut-based salient object segmentation. Vis Comput 35, 385–398 (2019). https://doi.org/10.1007/s00371-018-1471-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1471-4