Skip to main content
Log in

SSG: superpixel segmentation and GrabCut-based salient object segmentation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Saliency detection is a popular topic for image processing recently. In this paper, we propose a simple, robust and fast salient object segmentation framework. Firstly, we develop a novel saliency map segmentation strategy, named SSG which consists of superpixel region growing, superpixel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering and iterated graph cuts (GrabCut), where DBSCAN makes similar background regions cluster as a whole, region growing groups similar regions together as much as possible, GrabCut segments salient objects accurately. Then, the proposed SSG is combined with saliency detection to abstract salient objects. Experimental results on three benchmark datasets demonstrate that the proposed method achieves the favorable performance than many recent state-of-the-art methods in terms of precision, recall, F-measure and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://pan.baidu.com/s/1sl8YrXN, download code: 28uq.

  2. http://www.cs.bu.edu/groups/ivc/fastMBD/.

References

  1. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. Computer Vision Systems 5008, 66–75 (2010)

    Article  Google Scholar 

  2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. pp. 1597–1604 (2009)

  3. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Epfl (2010)

  4. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  5. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07. pp. 1–8 (2007)

  6. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  7. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a survey. Eprint Arxiv 16(7), 3118 (2014)

    Google Scholar 

  8. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2012)

    Article  Google Scholar 

  9. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: European Conference on Computer Vision, pp. 414–429 (2012)

  10. Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: International Conference on Neural Information Processing Systems, pp. 155–162 (2005)

  11. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: Computer Vision and Pattern Recognition, pp. 409–416 (2011)

  12. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise (1996)

  14. Fan, J., Zeng, G., Body, M., Hacid, M.S.: Seeded region growing: an extensive and comparative study. Pattern Recognit. Lett. 26(8), 1139–1156 (2005)

    Article  Google Scholar 

  15. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  16. Fu, K., Gong, C., Gu, I.Y., Yang, J.: Normalized cut-based saliency detection by adaptive multi-level region merging. IEEE Trans. Image Process. 24(12), 5671–5683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fu, Y., Cheng, J., Li, Z., Lu, H.: Saliency cuts: an automatic approach to object segmentation. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

  18. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007)

  19. Huo, L., Jiao, L., Wang, S., Yang, S.: Object-level saliency detection with color attributes. Pattern Recognit. 49, 162–173 (2016)

    Article  Google Scholar 

  20. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  21. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: British Machine Vision Conference (2011)

  22. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013). https://doi.org/10.1109/CVPR.2013.271

  23. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  24. Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383047

  25. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353 (2011)

    Article  Google Scholar 

  26. Ma, Y.F., Zhang, H.J.: Contrast-based image attention analysis by using fuzzy growing. In: Eleventh ACM International Conference on Multimedia, pp. 374–381 (2003)

  27. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Iapr International Conference on Pattern Recognition, 1994. Vol. 1—Conference A: Computer Vision and Image Processing, pp. 582–585 vol. 1 (2002)

  28. Otsu, N., Ostu, N., Nobuyuki, O.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics 9(1), 62–66 (1979)

    Article  Google Scholar 

  29. Ren, C.Y., Prisacariu, V.A., Reid, I.D.: gslicr slic superpixels at over 250hz. Computer Science (2015)

  30. Rother, C., Kolmogorov, V., Blake, A.: "grabcut": interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, pp. 309–314 (2004)

  31. Shi, J., Yan, Q., Li, X., Jia, J.: Hierarchical image saliency detection on extended cssd. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2016)

    Article  Google Scholar 

  32. Wang, J., Jiang, H., Yuan, Z., Cheng, M.M., Hu, X., Zheng, N.: Salient object detection: a discriminative regional feature integration approach. Int. J. Comput. Vision 123(2), 251–268 (2017). https://doi.org/10.1007/s11263-016-0977-3

    Article  Google Scholar 

  33. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: European Conference on Computer Vision, pp. 29–42 (2012)

  34. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)

  35. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

  36. Yildirim, G., Süsstrunk, S.: FASA: Fast, Accurate, and Size-Aware Salient Object Detection. Springer, Berlin (2015)

    Google Scholar 

  37. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM International Conference on Multimedia, pp. 815–824 (2006)

  38. Zhang, H., Xu, M., Zhuo, L., Havyarimana, V.: A novel optimization framework for salient object detection. Vis. Comput. 32(1), 31–41 (2016)

    Article  Google Scholar 

  39. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: IEEE International Conference on Computer Vision, pp. 1404–1412 (2016)

  40. Zhang, Q., Lin, J., Li, W., Shi, Y., Cao, G.: Salient object detection via compactness and objectness cues. Vis. Comput. 1, 1–17 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (61573134, 61703155), the National Science and Technology Support Program (2015BAF13B00) and the Innovation Project of Postgraduate Student in Hunan Province, China (CX2017B108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, Y., Zhu, Q. et al. SSG: superpixel segmentation and GrabCut-based salient object segmentation. Vis Comput 35, 385–398 (2019). https://doi.org/10.1007/s00371-018-1471-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1471-4

Keywords

Navigation