Skip to main content
Log in

An optimized source term formulation for incompressible SPH

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Incompressible SPH (ISPH) is a promising concept for the pressure computation in SPH. It works with large timesteps and the underlying pressure Poisson equation (PPE) can be solved very efficiently. Still, various aspects of current ISPH formulations can be optimized. This paper discusses issues of the two standard source terms that are typically employed in PPEs, i.e., density invariance (DI) and velocity divergence (VD). We show that the DI source term suffers from significant artificial viscosity, while the VD source term suffers from particle disorder and volume loss. As a conclusion of these findings, we propose a novel source term handling. A first PPE is solved with the VD source term to compute a divergence-free velocity field with minimized artificial viscosity. To address the resulting volume error and particle disorder, a second PPE is solved to improve the sampling quality. The result of the second PPE is used for a particle shift (PS) only. The divergence-free velocity field—computed from the first PPE—is not changed, but only resampled at the updated particle positions. Thus, the proposed source term handling incorporates velocity divergence and particle shift (VD + PS). The proposed VD + PS variant does not only improve the quality of the computed velocity field, but also accelerates the performance of the ISPH pressure computation. This is illustrated for IISPH—a recent ISPH implementation—where a performance gain factor of 1.6 could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 26, pp. 48:1–48:7 (2007)

  2. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

  3. Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  4. Monaghan, J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mueller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)

  6. Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Gr. 35(4), 79:1–79:11 (2016). https://doi.org/10.1145/2897824.2925897

    Google Scholar 

  7. He, X., Liu, N., Wang, H., Wang, G.: Local Poisson SPH for viscous incompressible fluids. Comput. Gr. Forum 31, 1948–1958 (2012)

    Article  Google Scholar 

  8. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28, pp. 40:1–40:6 (2009)

  9. Yang, T., Lin, M.C., Martin, R.R., Chang, J., Hu, S.M.: Versatile interactions at interfaces for SPH-based simulations. In: Kavan, L., Wojtan, C. (eds.) Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. The Eurographics Association (2016)

  10. Yang, T., Martin, R.R., Lin, M.C., Chang, J., Hu, S.M.: Pairwise force SPH model for real-time multi-interaction applications. IEEE Trans. Vis. Comput. Gr. 23(10), 2235–2247 (2017)

    Article  Google Scholar 

  11. Bender, J., Mueller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on position-based simulation methods in computer graphics. Comput. Gr. Forum 33(6), 228–251 (2014)

    Article  Google Scholar 

  12. Bodin, K., Lacoursire, C., Servin, M.: Constraint fluids. IEEE Trans. Vis. Comput. Gr. 18(3), 516–526 (2012)

    Article  Google Scholar 

  13. Cornelis, J., Ihmsen, M., Peer, A., Teschner, M.: IISPH-FLIP for incompressible fluids. Comput. Gr. Forum. 33(2), 255–262 (2014). https://doi.org/10.1111/cgf.12324

    Article  Google Scholar 

  14. Cummins, S., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fürstenau, J.P., Avci, B., Wriggers, P.: A comparative numerical study of pressure-Poisson-equation discretization strategies for SPH. In: 12th International SPHERIC Workshop, Ourense, Spain, June, pp. 1–8 (2017)

  16. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Gr. 20(3), 426–435 (2014)

    Article  Google Scholar 

  17. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. In: Lefebvre, S., Spagnuolo, M. (eds.) Eurographics 2014–State of the Art Reports, pp. 21–42. The Eurographics Association (2014). https://doi.org/10.2312/egst.20141034.

  18. Peer, A., Gissler, C., Band, S., Teschner, M.: An implicit SPH formulation for incompressible linearly elastic solids. Comput. Graph. Forum. (2017). https://doi.org/10.1111/cgf.13317

  19. Peer, A., Ihmsen, M., Cornelis, J., Teschner, M.: An implicit viscosity formulation for SPH fluids. ACM Trans. Gr. 34(4), 114:1–114:10 (2015). https://doi.org/10.1145/2766925

    Article  Google Scholar 

  20. Peer, A., Teschner, M.: Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Trans. Vis. Comput. Gr. 23(12), 2656–2662 (2017)

    Article  Google Scholar 

  21. Takahashi, T., Dobashi, Y., Nishita, T., Lin, MC.: An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Comput. Gr. Forum (2016). https://doi.org/10.1111/cgf.13292

  22. Winchenbach, R., Hochstetter, H., Kolb, A.: Infinite continuous adaptivity for incompressible SPH. ACM Trans. Gr. 36(4), 102:1–102:10 (2017). https://doi.org/10.1145/3072959.3073713

    Article  Google Scholar 

  23. Khayyer, A., Gotoh, H., Shao, S.: Enhanced predictions of wave impact pressure by improved incompressible SPH methods. Appl. Ocean Res. 31(2), 111–131 (2009). https://doi.org/10.1016/j.apor.2009.06.003

    Article  Google Scholar 

  24. Shao, S., Lo, Y.: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26(7), 787–800 (2003)

    Article  Google Scholar 

  25. Bender, J., Koschier, D.: Divergence-free Smoothed Particle Hydrodynamics. In: Proceedings of the 2015 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM (2015)

  26. Hu, X., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227(1), 264–278 (2007)

    Article  MATH  Google Scholar 

  27. Kang, N., Sagong, D.: Incompressible SPH using the divergence-free condition. Comput. Gr. Forum. 33(7), 219–228 (2014). https://doi.org/10.1111/cgf.12490

    Google Scholar 

  28. Nestor, R., Basa, M., Quinlan, N.: Moving boundary problems in the finite volume particle method. In: 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Lausanne, Switzerland, June, pp. 118–123 (2008)

  29. Skillen, A., Lind, S., Stansby, P.K., Rogers, B.D.: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput. Methods Appl. Mech. Eng. 265, 163–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, R., Stansby, P., Laurence, D.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703–6725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cline, M.B., Pai, D.K.: Post-stabilization for rigid body simulation with contact and constraints. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 3, pp. 3744–3751. IEEE (2003)

  32. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  33. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Gr.: TOG 32(4), 104 (2013)

    Article  MATH  Google Scholar 

  34. Ihmsen, M., Akinci, N., Becker, M., Teschner, M. (2011) A parallel SPH implementation on multi-core CPUs. Comput. Gr. Forum. https://doi.org/10.1111/j.1467-8659.2010.01832.x

  35. Winchenbach, R., Hochstetter, H., Kolb, A.: Constrained neighbor lists for SPH-based fluid simulations. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 49–56. Eurographics Association (2016)

  36. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Gr.: TOG 31(4), 62 (2012)

    Article  Google Scholar 

  37. Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive time-stepping for PCISPH. In: Proceedings VRIPHYS, pp. 79–88 (2010)

  38. Morris, J., Fox, P., Zhu, Y.: Modeling low Reynolds number incompressible flows. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  39. Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow. J. Comput. Phys. 305(C), 1119–1146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. In: ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 32, no (6), pp. 182:1–182:8 (2013)

  41. Geier, M., Greiner, A., Korvink, J.: Galilean invariant viscosity term for an thermal integer lattice Boltzmann automaton in three dimensions. In: NSTI Nanotechnology Conference and Trade Show p. 255258 (2004)

  42. Hess, B.: Determining the shear viscosity of model liquids from molecular dynamics simulations. BThe J. Chem. Phys. 116(1), 209 (2002)

    Article  MathSciNet  Google Scholar 

  43. FIFTY2 Technology GmbH: PreonLab. http://www.fifty2.eu (2017). Accessed 21 Dec 2017

  44. He, X., Liu, N., Li, S., Wang, H., Wang, G.: Local Poisson SPH for viscous incompressible fluids. Comput. Gr. Forum. 31(6), 1948–1958 (2012). https://doi.org/10.1111/j.1467-8659.2012.03074.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Cornelis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 77632 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornelis, J., Bender, J., Gissler, C. et al. An optimized source term formulation for incompressible SPH. Vis Comput 35, 579–590 (2019). https://doi.org/10.1007/s00371-018-1488-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1488-8

Keywords

Navigation