Skip to main content
Log in

Correction of overexposure utilizing haze removal model and image fusion technique

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an efficient method for overexposure correction utilizing haze removal model and image fusion technique, which draws on the experience of HDR technique. Assuming an OE image can be modeled as a normal exposure image added up with a layer of asymmetrical colorful haze, its submerged information in OE regions is enhanced by an improved haze removal model based on dark channel prior. The enhancement result possesses better visualization in OE regions and color distortion to a certain extent. With the image fusion technique based on weighted least squares filters and global contrast-based saliency, the texture obtained in OE regions is utilized to restore the overexposure. The advantages of the selected image fusion technique are validated in the paper. In the experiments, the proposed method is compared with conventional methods to corroborate the performance. Both the subjective visualization and quantitative indicators show that the result is effective in correcting the overexposure without increasing pseudo-information and oversaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aggarwal, M., Ahuja, N.: Split aperture imaging for high dynamic range. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, pp. 10–17. IEEE (2001)

  2. Tumblin, J., Agrawal, A., Raskar, R.: Why I want a gradient camera. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, pp. 103–110. IEEE (2005)

  3. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: ACM Transactions on Graphics (TOG), vol. 3, pp. 257–266. ACM (2002)

  4. Hasinoff, S.W., Durand, F., Freeman, W.T.: Noise-optimal capture for high dynamic range photography. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 553–560. IEEE (2010)

  5. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  6. Masood, S.Z., Zhu, J., Tappen, M.F.: Automatic correction of saturated regions in photographs using cross–channel correlation. In: Computer Graphics Forum 2009, vol. 7, pp. 1861–1869. Wiley Online Library (2009)

  7. Guo, D., Cheng, Y., Zhuo, S., Sim, T.: Correcting over-exposure in photographs. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 515–521. IEEE (2010)

  8. Lee, D.-H., Yoon, Y.-J., Kang, S., Ko, S.-J.: Correction of the overexposed region in digital color image. IEEE Trans. Consum. Electron. 60(2), 173–178 (2014)

    Article  Google Scholar 

  9. Hou, L., Ji, H., Shen, Z.: Recovering over-/underexposed regions in photographs. SIAM J. Imag. Sci. 6(4), 2213–2235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yoon, Y.-J., Lee, D.-H., Kang, S.-J., Park, W.-J., Ko, S.-J.: Patch-based over-exposure correction in image. In: The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), pp. 1–3. IEEE (2014)

  11. Arora, S., Hanmandlu, M., Gupta, G., Singh, L.: Enhancement of overexposed color images. In: 2015 3rd International Conference on Information and Communication Technology (ICoICT), pp. 207–211. IEEE (2015)

  12. Abebe, M.A., Booth, A., Kervec, J., Pouli, T., Larabi, M.-C.: Towards an automatic correction of over-exposure in photographs: application to tone-mapping. Comput. Vis. Image Underst. (2017). https://doi.org/10.1016/j.cviu.2017.05.011

  13. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J.-H., Jang, W.-D., Sim, J.-Y., Kim, C.-S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  15. Tan, R.T.: Visibility in bad weather from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)

  16. Fattal, R.: Single image dehazing. ACM Trans Gr (TOG) 27(3), 72 (2008)

    Google Scholar 

  17. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  18. Park, D., Han, D.K., Ko, H.: Single image haze removal with WLS-based edge-preserving smoothing filter. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2469–2473. IEEE (2013)

  19. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998, pp. 839–846. IEEE (1998)

  20. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  21. Gastal, E.S., Oliveira, M.M.: Domain transform for edge-aware image and video processing. In: ACM Transactions on Graphics (ToG), vol. 4, p. 69. ACM (2011)

  22. Shen, C.T., Chang, F.J., Hung, Y.P., Pei, S.C.: Edge-preserving image decomposition using L1 fidelity with L0 gradient. In: SIGGRAPH Asia 2012 Technical Briefs 2012, pp. 1–4 (2012)

  23. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM Transactions on Graphics (TOG), vol. 3, p. 67. ACM (2008)

  24. Kim, Y., Min, D., Ham, B., Sohn, K.: Fast domain decomposition for global image smoothing. IEEE Trans. Image Process. 26, 4079–4091 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, S.-D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  26. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV 1994, pp. 474–485. Academic Press Professional, Inc, Cambridge

  27. Yoon, Y.-J., Byun, K.-Y., Lee, D.-H., Jung, S.-W., Ko, S.-J.: A new human perception-based over-exposure detection method for color images. Sensors 14(9), 17159–17173 (2014)

    Article  Google Scholar 

  28. Panetta, K.A., Wharton, E.J., Agaian, S.S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst. Man Cybern., Part B (Cybern.) 38(1), 174–188 (2008)

    Article  Google Scholar 

  29. Michelson, A.A.: Studies in Optics. Courier Corporation, North Chelmsford (1995)

    MATH  Google Scholar 

  30. Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color–difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30(1), 21–30 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenwei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Feng, H., Xu, Z. et al. Correction of overexposure utilizing haze removal model and image fusion technique. Vis Comput 35, 695–705 (2019). https://doi.org/10.1007/s00371-018-1504-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1504-z

Keywords

Navigation