Skip to main content
Log in

Deformation simulation based on model reduction with rigidity-guided sampling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The deformation results of previous model reduction methods with external forces applied show noticeable differences from full-scale finite element method (FEM) simulation. We found that data-driven approaches, specifically proper orthogonal decomposition, can be a solution to this nonlinear deformation simulation problem in the subspace. Nevertheless, off-line FEM simulation with an infinite number of possible input forces at different locations makes it infeasible if no prior information is given. We propose rigidity-guided sampling to efficiently select the points of application of forces (force sample points) to construct more effective and compact subspace bases, thereby improving the simulation accuracy of reduced deformable models with applied external forces and still retaining fast run-time performance. The key idea of our approach is that distinct deformations of an object at different force sample points can be estimated prior to FEM simulation. By selecting the force sample points with distinct deformations, the computational cost of off-line FEM simulation can be reduced significantly. Our run-time deformation results are much closer to the full-scale FEM simulation with external forces applied, compared to the results of using only the modal derivative bases while the speedup over full-scale simulation is still substantial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. An, S., Kim, T., James, D.: Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27(5), 165:1–165:10 (2008)

    Article  Google Scholar 

  2. Au, O.K.C., Fu, H., Tai, C.L., Cohen-Or, D.: Handle-aware isolines for scalable shape editing. In: ACM SIGGRAPH (2007)

  3. Barbič, J., Zhao, Y.: Real-time large-deformation substructuring. In: ACM SIGGRAPH (2011)

  4. Barbič, J., James, D.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. In: ACM SIGGRAPH, pp. 982–990 (2005)

  5. Bickel, B., Bächer, M., Otaduy, M.A., Matusik, W., Pfister, H., Gross, M.: Capture and modeling of non-linear heterogeneous soft tissue. In: ACM SIGGRAPH, pp. 89:1–89:9 (2009)

  6. Barbič, J.: Computer graphics research code. http://www.jernejbarbic.com/code (2009). Accessed 02 Feb 2018

  7. Carlberg, K., Farhat, C.: A compact proper orthogonal decomposition basis for optimization-oriented reduced-order models. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2008)

  8. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  9. Dinh, Q., Marechal, Y.: Toward real-time finite-element simulation on GPU. IEEE Trans. Magn. 52(3), 1–4 (2016)

    Article  Google Scholar 

  10. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102(5), 1077–1110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49(3), 253–279 (1985)

    Article  MATH  Google Scholar 

  12. James, D., Pai, D.: DyRT: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21(3), 582–585 (2002)

    Article  Google Scholar 

  13. James, D., Pai, D.: Multiresolution green’s function methods for interactive simulation of large-scale elastostatic objects. ACM Trans. Graph. 22(1), 47–82 (2003)

    Article  Google Scholar 

  14. Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koyama, Y., Takayama, K., Umetani, N., Igarashi, T.: Real-time example-based elastic deformation. In: Symposium on Computer Animation, pp. 19–24 (2012)

  16. Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51(4), 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin, S., Thomaszewski, B., Grinspun, E., Gross, M.: Example-based elastic materials. In: ACM SIGGRAPH, pp. 72:1–72:8 (2011)

  18. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)

  19. Müller, M., Gross, M.: Interactive virtual materials. Proc. Graph. Interface 2004, 239–246 (2004)

    Google Scholar 

  20. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Symposium on Computer Animation, pp. 141–151 (2004)

  21. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)

    Article  MATH  Google Scholar 

  22. Nealen, A., Mller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006)

    Article  Google Scholar 

  23. Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. In: ACM SIGGRAPH, pp. 215–222 (1989)

  24. Schilders, W.H., van der Vorst, H.A., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications, vol. 13. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  25. Shabana, A.A.: Theory of Vibration Volume II: Discrete and Continuous Systems. Springer, New York (1991)

    MATH  Google Scholar 

  26. Sifakis, E., Barbic, J.: FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: ACM SIGGRAPH 2012 Courses, pp. 20:1–20:50 (2012)

  27. Sin, F.S., Schroeder, D., Barbič, J.: Vega: non-linear FEM deformable object simulator. Comput. Graph. Forum 32(1), 36–48 (2013)

    Article  Google Scholar 

  28. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Symposium on Geometry Processing, pp. 175–184 (2004)

  29. Von-Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: Real-time nonlinear shape interpolation. ACM Trans. Graph. 34(3), 34:1–34:10 (2015)

    Article  MATH  Google Scholar 

  30. Yu, D., Kanai, T.: Data-driven subspace enrichment for elastic deformations with collisions. Vis. Comput. 33(6–8), 779–788 (2017)

    Article  Google Scholar 

  31. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jernej Barbič for providing help about Vega FEM [6] in the early stage of this study. We also thank Yan-Ting Liu for making the accompanying video. This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant Nos. 104-2628-E-009-001-MY3 and 105-2221-E-009-095-MY3.

Funding This study was funded in part by the Ministry of Science and Technology of Taiwan under Grant Nos. 104-2628-E-009-001-MY3 and 105-2221-E-009-095-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Hui Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 39808 KB)

Supplementary material 2 (pdf 1931 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, ST., Hu, CH., Huang, CY. et al. Deformation simulation based on model reduction with rigidity-guided sampling. Vis Comput 34, 937–947 (2018). https://doi.org/10.1007/s00371-018-1533-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1533-7

Keywords

Navigation