Skip to main content
Log in

Wire cut of double-sided minimal surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2019

This article has been updated

Abstract

We present a systematic method for producing double-sided minimal surfaces by wire-cut machines. A link between minimal surfaces and ruled surfaces is pursued through wire cutting. Weierstrass parameterization is employed to define minimal surfaces (\(\mathbb {R}^3\)) over a complex plane (\(\mathbb {C}\)). Our method consists of three components. First, the orthogonal double-sided cuts match a pair of orthonormal tangent vectors on the surface. Second, A closed-form expression for the principal directions facilitates the global quadrangulation of minimal surfaces. Third, the CNC machine’s toolpath results from the surface’s analytic characterization. Asymptotic cutting and principal cutting are compared in terms of collisions and cutting error. We employed a general-purpose language (Java) to create machine instructions from the Weierstrass representation of minimal surfaces. Thus, the entire workflow from mathematical modeling to production involves no 3D models or CAD/CAM software. Both a 5-axis wire cutter and a customized robotic system were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  2. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Gr. 22(3), 485–493 (2003)

    Article  Google Scholar 

  3. Andersson, S., Hyde, S.T., Larsson, K., Lidin, S.: Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev. 88(1), 221–242 (1988)

    Article  Google Scholar 

  4. Bo, P., Bartoň, M., Plakhotnik, D., Pottmann, H.: Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Comput. Aided Des. 79, 1–11 (2016)

    Article  Google Scholar 

  5. Brander, D., Bærentzen, J.A., Clausen, K., Fisker, A.S., Gravesen, J., Lund, M.N., Nørbjerg, T.B., Steenstrup, K.H., Søndergaard, A.: Designing for hot-blade cutting: geometric approaches for high-speed manufacturing of doubly-curved architectural surfaces. In: Advances in Architectural Geometry (AAG 2016), pp. 306–327. vdf Hochschulverlag AG an der ETH Zürich (2016)

  6. Carberry, E., Fung, K., Glasser, D., Nagle, M., Ordulu, N.: Lecture Notes on Minimal Surfaces (2005). https://pdfs.semanticscholar.org/2ccd/e4f499ea8eba252e173fe14f39458677a4a5.pdf. Accessed 8 May 2018

  7. Chen, W., Cai, Y., Zheng, J.: Constructing triangular meshes of minimal area. Comput. Aided Des. Appl. 5(1–4), 508–518 (2008)

    Article  Google Scholar 

  8. Crane, K., Desbrun, M., Schröder, P.: Trivial connections on discrete surfaces. Comput. Gr. Forum 29(5), 1525–1533 (2010)

    Article  Google Scholar 

  9. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Representation formulas and examples of minimal surfaces. In: Dierkes, U.,Hildebrandt, S., Sauvigny, F. (eds.) Minimal Surfaces, pp. 91–236. Springer (2010)

  10. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N.J., Pottmann, H., Pauly, M.: Paneling architectural freeform surfaces. ACM Trans. Gr. 29(4), 45:1–45:10 (2010)

    Article  Google Scholar 

  11. Evans, M.E., Robins, V., Hyde, S.T.: Periodic entanglement I: networks from hyperbolic reticulations. Acta Crystallogr. Sect. A 69(3), 241–261 (2013)

    Article  MathSciNet  Google Scholar 

  12. Feringa, J., Søndergaard, A.: Fabricating architectural volume: stereotomic investigations in robotic craft. In:  Gramazio, F., Kohler, M., Langenberg, S. (eds.) Fabricate: Negotiating Design & Making. FABRICATE Conference 2014 at ETH Zürich, pp. 77–83 (2014)

  13. Flöry, S., Pottmann, H.: Ruled surfaces for rationalization and design in architecture. In: Sprecher, A., Yeshayahu, S., Lorenzo-Eiroa, P. (eds.) LIFE in: formation. On responsive information and variations in architecture, pp. 103–109 (2010)

  14. Fogden, A., Hyde, S.T.: Continuous transformations of cubic minimal surfaces. Eur. Phys. J. B Condens. Matter Complex Syst. 7(1), 91–104 (1999)

    Article  Google Scholar 

  15. Gandy, P.J., Klinowski, J.: Exact computation of the triply periodic G (‘Gyroid’) minimal surface. Chem. Phys. Lett. 321(5–6), 363–371 (2000)

    Article  Google Scholar 

  16. Gandy, P.J., Klinowski, J.: Exact computation of the triply periodic schwarz P minimal surface. Chem. Phys. Lett. 322(6), 579–586 (2000)

    Article  Google Scholar 

  17. Graig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  18. Gramazio, F., Kohler, M., Langenberg, S.: Fabricate: Negotiating Design & making. gta Verlag, Zurich (2014)

    Google Scholar 

  19. Harik, R.F., Gong, H., Bernard, A.: 5-Axis flank milling: a state-of-the-art review. Comput. Aided Des. 45(3), 796–808 (2013)

    Article  Google Scholar 

  20. Hua, H.: Javakuka open source library. http://javakuka.org (2016). Accessed 30 Nov 2016

  21. Hua, H.: Robotic wire cut. https://youtu.be/7Rh1S-Bs5bw (2017). Accessed 08 June 2017

  22. Hyde, S.T.: Crystals: animal, vegetable or mineral? Interface Focus 5(4) (2015). https://doi.org/10.1098/rsfs.2015.0027

  23. Knöppel, F., Crane, K., Pinkall, U., Schröder, P.: Globally optimal direction fields. ACM Trans. Gr. 32(4), 59:1–59:10 (2013)

    Article  MATH  Google Scholar 

  24. Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)

    MATH  Google Scholar 

  25. Lawden, D.F.: Elliptic Functions and Applications, vol. 80. Springer, Berlin (2013)

    MATH  Google Scholar 

  26. McGee, W., Feringa, J., Søndergaard, A.: Processes for an architecture of volume: robotic wire cutting. In: Brell-Cokcan, S., Braumann, J. (eds.) Rob | Arch 2012, pp. 62–71. Springer, Association for Robots in Architecture (2012)

    Google Scholar 

  27. Meeks III, W., Pérez, J.: The classical theory of minimal surfaces. Bull. Am. Math. Soc. 48(3), 325–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nitsche, J.C.: Lectures on Minimal Surfaces, vol. 1. Cambridge university press, Cambridge (1989)

    MATH  Google Scholar 

  29. Osserman, R.: A Survey of Minimal Surfaces. Courier Corporation, New York (2002)

    MATH  Google Scholar 

  30. Otto, F., Rasch, B.: Finding Form: Towards an Architecture of the Minimal. Axel Menges, London (1996)

    Google Scholar 

  31. Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., Wallner, J.: Freeform surfaces from single curved panels. ACM Trans. Gr. 27(3), 76:1–76:10 (2008)

    Article  Google Scholar 

  32. Schoen, A.H.: Infinite periodic minimal surfaces without self-intersections. NASA technical note, NASA-TN-D-5541 (1970)

  33. Sharma, R.: The weierstrass representation always gives a minimal surface. arXiv preprint arXiv:1208.5689 (2012)

  34. Steenstrup, K.H., Nørbjerg, T.B., Søndergaard, A., Bærentzen, A., Gravesen, J.: Cuttable ruledsurface strips for milling. In: Adriaenssens, S., Gramazio, F., Kohler, M., Menges, A., Pauly, M. (eds.) Advances in Architectural Geometry 2016, pp. 328–342. NCCR Digital Fabrication, Zurich (2016)

    Google Scholar 

  35. Taubin, G.: A signal processing approach to fair surface design. In: Mair, S., Cook, R. (eds.) Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358. ACM (1995)

  36. Terrones, H.: Computation of minimal surfaces. Le Journal de Physique Colloques 51(C7), C7–345 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The digital fabrication was carried out at Prof. Li Biao’s Institute of Algorithms & Applications, Southeast University. We would like to thank Wang Xiao for video recoding and the graduate students from the Institute for their support.

Funding

This research is supported by National Natural Science Foundation of China (51778118, 51478116, 51538006, 51578123) and by Ministry of Housing and Urban-Rural Development of China (UDC2017020212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hua.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Human and animal rights statement

This research does not involve human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, H., Jia, T. Wire cut of double-sided minimal surfaces. Vis Comput 34, 985–995 (2018). https://doi.org/10.1007/s00371-018-1548-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1548-0

Keywords

Navigation