Skip to main content
Log in

An improved topology extraction approach for vectorization of sketchy line drawings

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Vectorization converts raster scans of line drawings into vector graphics; it breaks the barrier between line drawing generation and postprocessing. Prior work on line drawing vectorization considerably succeeded in revealing artists’ drawing intention driven by structural topologies. However, none of them is able to extract simplified topologies for sketchy line drawings consisted by many unwanted lines. In this paper, we propose an improved topology extraction approach based on artists’ sketching customs. Redundant regions and open curves are discriminated from artists’ deliberate ones and further removed progressively through an iterative optimization mechanism. We demonstrate that our improved topology benefits our vectorization method as well as existing topology-driven ones and allows them to vectorize rough sketchy line drawings robustly and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bao, B., Fu, H.: Vectorizing line drawings with near-constant line width. In: Proceedings of the 19th IEEE International Conference on Image Processing, pp. 805–808. Orlando, Florida, USA (2012). https://doi.org/10.1109/ICIP.2012.6466982

  2. Barla, P., Thollot, J., Sillion, F.X.: Geometric clustering for line drawing simplification. In: Proceedings of the 16th Eurographics Conference on Rendering Techniques, pp. 183–192. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2005). https://doi.org/10.2312/EGWR/EGSR05/183-192

  3. Bartolo, A., Camilleri, K.P., Fabri, S.G., Borg, J.C.: Line tracking algorithm for scribbled drawings. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing, pp. 554–559. IEEE (2008). https://doi.org/10.1109/ISCCSP.2008.4537287

  4. Bartolo, A., Camilleri, K.P., Fabri, S.G., Borg, J.C., Farrugia, P.J.: Scribbles to vectors: preparation of scribble drawings for CAD interpretation. In: Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 123–130. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1384429.1384456

  5. Bo, P., Luo, G., Wang, K.: A graph-based method for fitting planar b-spline curves with intersections. J. Comput. Des. Eng. 3(1), 14–23 (2016). https://doi.org/10.1016/j.jcde.2015.05.001

    Article  Google Scholar 

  6. Bonnici, A., Camilleri, K.: A circle-based vectorization algorithm for drawings with shadows. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, pp. 69–77. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2487381.2487386

  7. Bonnici, A., Camilleri, K.P.: Scribble vectorization using concentric sampling circles. In: Proceedings of the 3rd International Conference on Advanced Engineering Computing and Applications in Sciences, pp. 89–94 (2009). https://doi.org/10.1109/ADVCOMP.2009.20

  8. Chen, J., Guennebaud, G., Barla, P., Granier, X.: Non-oriented MLS gradient fields. Comput. Graph. Forum 32(8), 98–109 (2013). https://doi.org/10.1111/cgf.12164

    Article  Google Scholar 

  9. Chen, J., Lei, Q., Miao, Y., Peng, Q.: Vectorization of line drawing image based on junction analysis. Sci. China Inf. Sci. 58(7), 1–14 (2015). https://doi.org/10.1007/s11432-014-5246-x

    Article  MathSciNet  Google Scholar 

  10. Favreau, J.D., Lafarge, F., Bousseau, A.: Fidelity versus simplicity: a global approach to line drawing vectorization. ACM Trans. Graph. 35(4), 120:1–120:10 (2016). https://doi.org/10.1145/2897824.2925946

    Article  Google Scholar 

  11. Grabli, S., Durand, F., Sillion, F.X.: Density measure for line-drawing simplification. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, pp. 309–318 (2004). https://doi.org/10.1109/PCCGA.2004.1348362

  12. Hilaire, X., Tombre, K.: Improving the accuracy of skeleton-based vectorization. In: Proceedings of the Fourth International Workshop on Graphics Recognition Algorithms and Applications. Lecture Notes in Computer Science, vol. 2390, pp. 273–288. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45868-9_24

    Google Scholar 

  13. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006). https://doi.org/10.1109/TPAMI.2006.127

    Article  Google Scholar 

  14. Huang, H., Wu, S., Cohenor, D., Gong, M., Zhang, H., Li, G., Chen, B.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32(4), 65 (2013). https://doi.org/10.1145/2461912.2461913

    Article  Google Scholar 

  15. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering. Comput. Graph. Forum 30(2), 593–602 (2011). https://doi.org/10.1111/j.1467-8659.2011.01882.x

    Article  Google Scholar 

  16. Liu, X., Wong, T.T., Heng, P.A.: Closure-aware sketch simplification. ACM Trans. Graph. 34(6), 168:1–168:10 (2015). https://doi.org/10.1145/2816795.2818067

    Article  Google Scholar 

  17. Nieuwenhuizen, P.R., Kiewiet, O., Bronsvoort, W.F.: An integrated line tracking and vectorization algorithm. Comput. Graph. Forum 13(3), 349–359 (1994). https://doi.org/10.1111/1467-8659.1330349

    Article  Google Scholar 

  18. Noris, G., Hornung, A., Sumner, R.W., Simmons, M., Gross, M.: Topology-driven vectorization of clean line drawings. ACM Trans. Graph. 32(1), 4:1–4:11 (2013). https://doi.org/10.1145/2421636.2421640

    Article  MATH  Google Scholar 

  19. Preim, B., Strothotte, T.: Tuning rendered line-drawings. In: Proceedings of Winter School of Computer Graphics, vol. 3, no. 1–2, pp. 228–238 (1995)

  20. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016). https://doi.org/10.1016/j.patrec.2015.04.006

    Article  Google Scholar 

  21. Sasaki, K., Iizuka, S., Simo-Serra, E., Ishikawa, H.: Joint gap detection and inpainting of line drawings. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/CVPR.2017.611

  22. Silver, D., Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 530–548 (2007). https://doi.org/10.1109/TVCG.2007.1002

    Article  Google Scholar 

  23. Simo-Serra, E., Iizuka, S., Sasaki, K., Ishikawa, H.: Learning to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans. Graph. 35(4), 121:1–121:11 (2016). https://doi.org/10.1145/2897824.2925972

    Article  Google Scholar 

  24. Sun, J., Liang, L., Wen, F., Shum, H.Y.: Image vectorization using optimized gradient meshes. ACM Trans. Graph. 26(3), 11–18 (2007). https://doi.org/10.1145/1276377.1276391

    Article  Google Scholar 

  25. Wang, C., Zhu, J., Guo, Y., Wang, W.: Video vectorization via tetrahedral remeshing. IEEE Trans. Image Process. 26(4), 1833–1844 (2017). https://doi.org/10.1109/TIP.2017.2666742

    Article  MathSciNet  Google Scholar 

  26. Whited, B., Rossignac, J., Slabaugh, G., Fang, T., Unal, G.: Pearling: stroke segmentation with crusted pearl strings. IEEE Pattern Recognit. Image Anal. 19(2), 277–283 (2009). https://doi.org/10.1134/S1054661809020102

    Article  Google Scholar 

  27. Wilson, B., Ma, K.L.: Rendering complexity in computer-generated pen-and-ink illustrations. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, NPAR ’04, pp. 129–137. ACM, New York, NY, USA (2004). https://doi.org/10.1145/987657.987674

  28. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvilinear feature alignment. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, pp. 115:1–115:10. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1661412.1618461

  29. Xie, G., Sun, X., Tong, X., Nowrouzezahrai, D.: Hierarchical diffusion curves for accurate automatic image vectorization. ACM Trans. Graph. 33(6), 230:1–230:11 (2014). https://doi.org/10.1145/2661229.2661275

    Article  Google Scholar 

  30. Zhang, S.H., Chen, T., Zhang, Y.F., Hu, S.M., Martin, R.R.: Vectorizing cartoon animations. IEEE Trans. Vis. Comput. Graph. 15(4), 618–629 (2009). https://doi.org/10.1109/TVCG.2009.9

    Article  Google Scholar 

  31. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984). https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiazhou Chen or Xujia Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Du, M., Qin, X. et al. An improved topology extraction approach for vectorization of sketchy line drawings. Vis Comput 34, 1633–1644 (2018). https://doi.org/10.1007/s00371-018-1549-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1549-z

Keywords

Navigation