Skip to main content
Log in

An efficient FLIP and shape matching coupled method for fluid–solid and two-phase fluid simulations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Solid dynamic deformation and multiphase fluid coupling driven by numerical simulation have manifested their significance for many graphics applications during the past 2 decades. For example, the fluid implicit particle (FLIP) method and shape matching constraint based on position-based dynamics (PBD) have demonstrated their unique graphics strength in fluid and solid animation, respectively. In this paper, we propose a novel integrated approach supporting the seamless unification of FLIP and dynamic shape matching. We devise new algorithms to tackle existing difficulties when handling new phenomena such as high-fidelity fluid–solid interactions, solid deformations, melting and immiscible fluid coupling. The key innovation of this paper is a unified Lagrangian framework that seamlessly blends FLIP- and PBD-based shape matching constraints toward the natural yet flexible coupling between fluid and deformable solid. Within our integrated framework, it enables many complicated fluid–solid phenomena with ease. We conduct various kinds of experiments, all the results demonstrate the advantages of our unified hybrid approach toward visual fidelity, computational efficiency, numerical stability, and application versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012)

    Article  Google Scholar 

  2. Akinci, N., Cornelis, J., Akinci, G., Teschner, M.: Coupling elastic solids with smoothed particle hydrodynamics fluids. Comput. Anim. Virtual Worlds 24(3–4), 195–203 (2013)

    Article  Google Scholar 

  3. Allard, J., Courtecuisse, H., Faure, F.: Implicit FEM and fluid coupling on GPU for interactive multiphysics simulation. ACM SIGGRAPH 2011 Talks, pp. 52:1–52:1 (2011)

  4. Ando, R., Thurey, N., Tsuruno, R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18(8), 1202–1214 (2012)

    Article  Google Scholar 

  5. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid–fluid coupling. ACM Trans. Graph. 26(3), 100 (2007)

    Article  MATH  Google Scholar 

  6. Bender, J., Müller, M., Macklin, M.: Position-based simulation methods in computer graphics. In: Tutorial Proceedings of Eurographics (2015)

  7. Bender, J., Dan, K., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Comput. Graph. 44, 1–10 (2014)

    Article  Google Scholar 

  8. Bender, J., Müller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on positionbased simulation methods in computer graphics. Comput. Graph. Forum 33(6), 228251 (2014)

    Article  Google Scholar 

  9. Boyd, L., Bridson, R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31(2), 16:1–16:12 (2012)

    Article  Google Scholar 

  10. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23(3), 377–384 (2004)

    Article  Google Scholar 

  11. Clausen, P., Wicke, M., Shewchuk, J.R., O’brien, J.F.: Simulating liquids and solid–liquid interactions with lagrangian meshes. ACM Trans. Graph. 32(2), 17 (2013)

    Article  MATH  Google Scholar 

  12. Cornelis, J., Bender, J., Gissler, C., Ihmsen, M., Teschner, M.: An optimized source term formulation for incompressible SPH. Vis. Comput (2018). https://doi.org/10.1007/s00371-018-1488-8

    Article  Google Scholar 

  13. Cornelis, J., Ihmsen, M., Peer, A., Teschner, M.: IISPH–FLIP for incompressible fluids. Comput. Graph. Forum 33(2), 255–262 (2014)

    Article  Google Scholar 

  14. Ferstl, F., Ando, R., Wojtan, C., Westermann, R., Thuerey, N.: Narrow band flip for liquid simulations. Int. J. Numer. Methods Fluids 35(2), 225–232 (2016)

    Google Scholar 

  15. Gagnon, J., Paquette, E.: Procedural and interactive icicle modeling. Vis. Comput. 27(6–8), 451–461 (2011)

    Article  Google Scholar 

  16. Gao, Y., Li, S., Qin, H., Hao, A.: A novel fluid-solid coupling framework integrating flip and shape matching methods. In: Proceedings of the Computer Graphics International Conference, p. 11. ACM (2017)

  17. Gao, Y., Li, S., Yang, L., Qin, H., Hao, A.: An efficient heat-based model for solid–liquid–gas phase transition and dynamic interaction. Graph. Models 94, 14–24 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gerszewski, D., Bargteil, A.W.: Physics-based animation of large-scale splashing liquids. ACM Trans. Graph. 32(6), 185:1–185:6 (2013)

    Article  Google Scholar 

  19. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. Eurographics 2014-State of the Art Reports, pp. 21–42 (2014)

  20. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., Gross, M.: A unified Lagrangian approach to solid–fluid animation, vol. 2005, pp. 125–148 (2005)

  21. Lenaerts, T., Dutr, P.: Mixing fluids and granular materials. Comput. Graph. Forum 28(2), 213–218 (2009)

    Article  Google Scholar 

  22. Lenaerts, T., Adams, B., Dutr, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 15–19 (2008)

    Article  Google Scholar 

  23. Lii, S.Y., Wong, S.K.: Ice melting simulation with water flow handling. Vis. Comput. 30(5), 531–538 (2014)

    Article  Google Scholar 

  24. Ller, M., Chentanez, N., Kim, T.Y., Macklin, M.: Strain based dynamics. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium Computer Animation, pp. 149–157 (2014)

  25. Macklin, M., Müller, M., Chentanez, N.: Xpbd: Position-based simulation of compliant constrained dynamics (2016)

  26. Macklin, M.: Position based fluids. ACM Trans. Graph. 32(32), 104:1–104:12 (2013)

    MATH  Google Scholar 

  27. Macklin, M., Ller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33(4), 1–12 (2014)

    Article  Google Scholar 

  28. Martinek, M., Grosso, R., Greiner, G.: Interactive partial 3d shape matching with geometric distance optimization. Vis. Comput. 31(2), 223–233 (2015)

    Article  Google Scholar 

  29. Misztal, M.K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Bærentzen, J.A., Bridson, R.: Multiphase flow of immiscible fluids on unstructured moving meshes, pp. 97–106. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2012)

  30. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)

    Article  Google Scholar 

  31. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  32. Peer, A., Teschner, M.: Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Trans. Vis. Comput. Graph. 23, 2656–2662 (2016)

    Article  Google Scholar 

  33. Selino, A., Jones, M.: Large and small eddies matter: animating trees in wind using coarse fluid simulation and synthetic turbulence. Comput. Graph. Forum 32(1), 75–84 (2013)

    Article  Google Scholar 

  34. Shao, X., Zhou, Z., MagnenatThalmann, N., Wu, W.: Stable and fast fluid–solid coupling for incompressible SPH. Comput. Graph. Forum 34(1), 191–204 (2015)

    Article  Google Scholar 

  35. Tournier, M., Nesme, M., Gilles, B.: Stable constrained dynamics. ACM Trans. Graph. 34(4), 1–10 (2015)

    Article  MATH  Google Scholar 

  36. Wong, T.H., Leach, G., Zambetta, F.: An adaptive octree grid for GPU-based collision detection of deformable objects. Vis. Comput. 30(6–8), 729–738 (2014)

    Article  Google Scholar 

  37. Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79 (2016)

    Google Scholar 

  38. Yang, L., Li, S., Hao, A., Qin, H.: Realtime two-way coupling of meshless fluids and nonlinear fem. Comput. Graph. Forum 31(7), 2037–2046 (2012)

    Article  Google Scholar 

  39. Yang, L., Li, S., Hao, A., Qin, H.: Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Comput. Graph. Forum 33(7), 199–208 (2014)

    Article  Google Scholar 

  40. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by National Natural Science Foundation of China (Nos. 61672077 and 61532002), National Key R&D Program of China (No. 2017YFF0106407), Applied Basic Research Program of Qingdao (No. 161013xx), National Science Foundation of USA (Nos. IIS-0949467, IIS-1047715, and IIS-1049448) and the Academic Excellence Foundation of BUAA for Ph.D. Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 116151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, S., Qin, H. et al. An efficient FLIP and shape matching coupled method for fluid–solid and two-phase fluid simulations. Vis Comput 35, 1741–1753 (2019). https://doi.org/10.1007/s00371-018-1569-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1569-8

Keywords

Navigation