Skip to main content

Advertisement

Log in

Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the recent development and application of human–computer interaction systems, facial expression recognition (FER) has become a popular research area. The recognition of facial expression is a difficult problem for existing machine learning and deep learning models because that the images can vary in brightness, background, pose, etc. Deep learning methods also require the support of big data. It does not perform well when the database is small. Feature extraction is very important for FER, even a simple algorithm can be very effective if the extracted features are sufficient to be separable. However, deep learning methods automatically extract features so that some useless features can interfere with useful features. For these reasons, FER is still a challenging problem in computer vision. In this paper, with the aim of coping with few data and extracting only useful features from image, we propose new face cropping and rotation strategies and simplification of the convolutional neural network (CNN) to make data more abundant and only useful facial features can be extracted. Experiments to evaluate the proposed method were performed on the CK+ and JAFFE databases. High average recognition accuracies of 97.38% and 97.18% were obtained for 7-class experiments on the CK+ and JAFFE databases, respectively. A study of the impact of each proposed data processing method and CNN simplification is also presented. The proposed method is competitive with existing methods in terms of training time, testing time, and recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 886–893. https://doi.org/10.1109/CVPR.2005.177 (2005)

  2. De la Torre, F., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.F.: Intraface. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp 1–8. https://doi.org/10.1109/FG.2015.7163082 (2015)

  3. Ekman, P., Friesen, W.V.: Facial action coding system: a technique for the measurement of facial movement. In: Consulting Psychologists, Palo Alto (1978)

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

    Google Scholar 

  5. Gogić, I., Manhart, M., Pandžić, I.S., Ahlberg, J.: Fast facial expression recognition using local binary features and shallow neural networks. Vis. Comput. 1–16 (2018). https://doi.org/10.1007/s00371-018-1585-8

    Article  Google Scholar 

  6. Goh, K.M., Ng, C.H., Lim, L.L., Sheikh, U.: Micro-expression recognition: an updated review of current trends, challenges and solutions. Vis. Comput. 1–24 (2018). https://doi.org/10.1007/s00371-018-1607-6

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 (2016)

  8. Jarrett, K., Kavukcuoglu, K., Ranzato, M., Lecun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision, vol 30, pp 2146–2153 (2009)

  9. Jin, H., Wang, X., Lian, Y., Hua, J.: Emotion information visualization through learning of 3d morphable face model. Vis. Comput. 1–14 (2018). https://doi.org/10.1007/s00371-018-1482-1

    Article  Google Scholar 

  10. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987). https://doi.org/10.1152/jn.1987.58.6.1233

    Article  Google Scholar 

  11. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp 1097–1105. Curran Associates, Inc., Lake Tahoe, Nevada, USA (2012)

  13. Liu, M., Li, S., Shan, S., Chen, X.: Au-inspired deep networks for facial expression feature learning. Neurocomputing 159(C), 126–136 (2015). https://doi.org/10.1016/j.neucom.2015.02.011

    Article  Google Scholar 

  14. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1805–1812 (2014)

  15. Lopes, A.T., Aguiar, E.D., Souza, A.F.D., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2016). https://doi.org/10.1016/j.patcog.2016.07.026

    Article  Google Scholar 

  16. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: IEEE conference on computer vision and pattern recognition workshops, pp 94–101. https://doi.org/10.1109/CVPRW.2010.5543262 (2010)

  17. Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999). https://doi.org/10.1109/34.817413

    Article  Google Scholar 

  18. Lcun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  19. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)

    Article  Google Scholar 

  20. Mayya, V., Pai, R.M., Pai, M.M.M.: Automatic facial expression recognition using dcnn. Proc. Comput. Sci. 93, 453–461 (2016a). https://doi.org/10.1016/j.procs.2016.07.233

    Article  Google Scholar 

  21. Mayya, V., Pai, R.M., Pai, M.M.M.: Combining temporal interpolation and dcnn for faster recognition of micro-expressions in video sequences. In: International Conference on Advances in Computing, Communications and Informatics, pp 699–703. https://doi.org/10.1109/ICACCI.2016.7732128 (2016)

  22. Mehrabian, A.: Communication without words. Commun. Theory, 193–200 (2008)

  23. Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: Pca-based dictionary building for accurate facial expression recognition via sparse representation. J. Vis. Commun. Image Represent. 25(5), 1082–1092 (2014). https://doi.org/10.1016/j.jvcir.2014.03.006

    Article  Google Scholar 

  24. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  25. Owusu, E., Zhan, Y., Mao, Q.R.: An svm-adaboost facial expression recognition system. Appl. Intell. 40(3), 536–545 (2014)

    Article  Google Scholar 

  26. Pu, X., Fan, K., Chen, X., Ji, L., Zhou, Z.: Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing 168(C), 1173–1180 (2015). https://doi.org/10.1016/j.neucom.2015.05.005

    Article  Google Scholar 

  27. Rashid, M., Abu-Bakar, S., Mokji, M.: Human emotion recognition from videos using spatio-temporal and audio features. Vis. Comput. 29(12), 1269–1275 (2013)

    Article  Google Scholar 

  28. Rivera, A.R., Castillo, J.R., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22(5), 1740–1752 (2013). https://doi.org/10.1109/TIP.2012.2235848

    Article  MathSciNet  MATH  Google Scholar 

  29. Shan, C., Gong, S., Mcowan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009). https://doi.org/10.1016/j.imavis.2008.08.005

    Article  Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp 1139–1147 (2013)

  32. Uddin, M.Z., Hassan, M.M., Almogren, A., Zuair, M., Fortino, G., Torresen, J.: A facial expression recognition system using robust face features from depth videos and deep learning. Comput. Electr. Eng. 63, 114–125 (2017). https://doi.org/10.1016/j.compeleceng.2017.04.019

    Article  Google Scholar 

  33. Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., Xun, E.: Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9(5), 597–610 (2017). https://doi.org/10.1007/s12559-017-9472-6

    Article  Google Scholar 

  34. Yang, P., Liu, Q., Metaxas, D.N.: Boosting coded dynamic features for facial action units and facial expression recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–6. https://doi.org/10.1109/CVPR.2007.383059 (2007)

  35. Yu, Z., Liu, Q., Liu, G.: Deeper cascaded peak-piloted network for weak expression recognition. Vis. Comput. 34(12), 1691–1699 (2018). https://doi.org/10.1007/s00371-017-1443-0

    Article  Google Scholar 

  36. Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2017). https://doi.org/10.1016/j.neucom.2017.08.043

    Article  Google Scholar 

  37. Zhang, K., Huang, Y., Wu, H., Wang, L.: Facial smile detection based on deep learning features. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, pp 534–538 (2015)

  38. Zhao, G., Pietikinen, M., Member, S.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2008). https://doi.org/10.1109/TPAMI.2007.1110

    Article  Google Scholar 

  39. Zhao, J., Mao, X., Zhang, J.: Learning deep facial expression features from image and optical flow sequences using 3D CNN. Vis. Comput. 34(10), 1461–1475 (2018). https://doi.org/10.1007/s00371-018-1477-y

    Article  Google Scholar 

Download references

Funding

This research was sponsored by the National Natural Science Foundation of China (Grant No. 51605464), National Basic Research Program of China (973 Program) (2014CB049500) and Research on the Major Scientific Instrument of National Natural Science Foundation of China (61727809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Jin, Y., Akram, M.W. et al. Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy. Vis Comput 36, 391–404 (2020). https://doi.org/10.1007/s00371-019-01627-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01627-4

Keywords

Navigation