Abstract
Isometric correspondence is an important technique for surface correspondence. Recently, numerous algorithms have been proposed to build isometric mapping. However, those methods tend to be error prone due to the topological variation and noises of the dynamic surface. To address this issue, we propose a dynamic surface correspondence method by computing maximum spatial–temporal isometric cluster. Firstly, the algorithm defines a maximum isometric cluster score to measure the correspondence quality of each cluster in the product space. Then, the maximum problem is formulated into a quadratic programming problem. Furthermore, we define a similarity function which explicitly encodes the spatial–temporal consistence of the dynamic surface. It can greatly reduce the solving dimension, and improve the correspondence accuracy. Finally, the result is extended to the dense correspondence by a geodesic distance vector. Experimental results show that our algorithm can generate consistent correspondence on three databases of surface sequences, which outperforms existing state-of-the-art algorithms.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aflalo, Y., Brezis, H., Kimmel, R.: On the optimality of shape and data representation in the spectral domain. Siam J. Imaging Sci. 8(2), 1579 (2014)
Alhashim, I., Xu, K., Zhuang, Y., Cao, J., Simari, P., Zhang, H.: Deformation-driven topology-varying 3D shape correspondence. ACM Trans. Graph. 34(6), 236 (2015)
Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Natl. Acad. Sci. 103(5), 1168–1172 (2006)
Chen, Q., Koltun, V.: Robust nonrigid registration by convex optimization. In: IEEE International Conference on Computer Vision, pp. 2039–2047 (2015)
Cosmo, L., Rodola, E., Albarelli, A., Memoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36(1), 209–221 (2017)
Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32(5), 13–15 (2013)
Feng, W., Huang, J., Ju, T., Bao, H.: Feature correspondences using morse smale complex. Vis. Comput. 29(1), 53–67 (2013)
Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking and surface reconstruction using l0 regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3083–3091 (2015)
Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. In: Symposium on Geometry Processing, pp. 1449–1457 (2008)
Huang, Q.X., Guibas, L.: Consistent shape maps via semidefinite programming. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, pp. 177–186. Eurographics Association (2013)
Jiang, T., Qian, K., Liu, S., Wang, J., Yang, X., Zhang, J.: Consistent as-similar-as-possible non-isometric surface registration. Vis. Comput. 33(6–8), 891–901 (2017)
Kezurer, I., Kovalsky, S.Z., Basri, R., Lipman, Y.: Tight relaxation of quadratic matching. Comput. Graph. Forum 34(5), 115–128 (2015)
Kim, V., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 123–456 (2011)
Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)
Küpcü, E., Yemez, Y.: Reliable isometric point correspondence from depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1266–1273 (2017)
Lahner, Z., Rodola, E., Schmidt, F.R., Bronstein, M.M., Cremers, D.: Efficient globally optimal 2D-to-3D deformable shape matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2185–2193 (2016)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1482–1489. IEEE (2005)
Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. 28(3), 1 (2009)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mahamud, S., Williams, L.R., Thornber, K.K., Xu, K.: Segmentation of multiple salient closed contours from real images. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 433–444 (2003)
Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)
Parashar, S., Pizarro, D., Bartoli, A.: Isometric non-rigid shape-from-motion with Riemannian geometry solved in linear time. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2442–2454 (2017)
Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89(2–3), 248–265 (2010)
Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32(4), 72 (2013)
Sahillioğlu, Y., Yemez, Y.: Partial 3-D correspondence from shape extremities. Comput. Graph. Forum 33(6), 63–76 (2014)
Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vis. Comput. 10(5), 283–288 (1992)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Smeets, D., Keustermans, J., Vandermeulen, D., Suetens, P.: meshSIFT: local surface features for 3D face recognition under expression variations and partial data. Comput. Vision Image Underst. 117(2), 158–169 (2013)
Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. 27(3), 21–31 (2007)
Tung, T., Matsuyama, T.: Geodesic mapping for dynamic surface alignment. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 901–913 (2014)
Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M., Kimmel, R., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)
Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. arXiv preprint arXiv:1701.00669 (2017)
Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. (TOG) 28(5), 174 (2009)
Xu, K., Kim, V.G., Huang, Q., Kalogerakis, E.: Data-driven shape analysis and processing. Comput. Graph. Forum 36(1), 101–132 (2017)
Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 382–389. IEEE (2010)
Acknowledgements
This research work was supported by China Natural Science Foundation (Grant No: 61502133). Part of the work is supported by Natural Science Foundation of Zhejiang Province (Grant Nos: LY19F020031, LY16F020029).The authors also thank the anonymous reviewers for their kind comments.
Funding
This study was funded by National Natural Science Foundation of China (Grant No.: 61502133).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pan, X., Cheng, Z., Liu, F. et al. Maximum spatial–temporal isometric cluster for dynamic surface correspondence. Vis Comput 36, 785–798 (2020). https://doi.org/10.1007/s00371-019-01655-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-019-01655-0