Skip to main content
Log in

Maximum spatial–temporal isometric cluster for dynamic surface correspondence

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Isometric correspondence is an important technique for surface correspondence. Recently, numerous algorithms have been proposed to build isometric mapping. However, those methods tend to be error prone due to the topological variation and noises of the dynamic surface. To address this issue, we propose a dynamic surface correspondence method by computing maximum spatial–temporal isometric cluster. Firstly, the algorithm defines a maximum isometric cluster score to measure the correspondence quality of each cluster in the product space. Then, the maximum problem is formulated into a quadratic programming problem. Furthermore, we define a similarity function which explicitly encodes the spatial–temporal consistence of the dynamic surface. It can greatly reduce the solving dimension, and improve the correspondence accuracy. Finally, the result is extended to the dense correspondence by a geodesic distance vector. Experimental results show that our algorithm can generate consistent correspondence on three databases of surface sequences, which outperforms existing state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aflalo, Y., Brezis, H., Kimmel, R.: On the optimality of shape and data representation in the spectral domain. Siam J. Imaging Sci. 8(2), 1579 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Alhashim, I., Xu, K., Zhuang, Y., Cao, J., Simari, P., Zhang, H.: Deformation-driven topology-varying 3D shape correspondence. ACM Trans. Graph. 34(6), 236 (2015)

    Article  Google Scholar 

  3. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Natl. Acad. Sci. 103(5), 1168–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Q., Koltun, V.: Robust nonrigid registration by convex optimization. In: IEEE International Conference on Computer Vision, pp. 2039–2047 (2015)

  6. Cosmo, L., Rodola, E., Albarelli, A., Memoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36(1), 209–221 (2017)

    Article  Google Scholar 

  7. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32(5), 13–15 (2013)

    Article  Google Scholar 

  8. Feng, W., Huang, J., Ju, T., Bao, H.: Feature correspondences using morse smale complex. Vis. Comput. 29(1), 53–67 (2013)

    Article  Google Scholar 

  9. Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking and surface reconstruction using l0 regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3083–3091 (2015)

  10. Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. In: Symposium on Geometry Processing, pp. 1449–1457 (2008)

    Article  Google Scholar 

  11. Huang, Q.X., Guibas, L.: Consistent shape maps via semidefinite programming. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, pp. 177–186. Eurographics Association (2013)

  12. Jiang, T., Qian, K., Liu, S., Wang, J., Yang, X., Zhang, J.: Consistent as-similar-as-possible non-isometric surface registration. Vis. Comput. 33(6–8), 891–901 (2017)

    Article  Google Scholar 

  13. Kezurer, I., Kovalsky, S.Z., Basri, R., Lipman, Y.: Tight relaxation of quadratic matching. Comput. Graph. Forum 34(5), 115–128 (2015)

    Article  Google Scholar 

  14. Kim, V., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 123–456 (2011)

    Article  Google Scholar 

  15. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Küpcü, E., Yemez, Y.: Reliable isometric point correspondence from depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1266–1273 (2017)

  17. Lahner, Z., Rodola, E., Schmidt, F.R., Bronstein, M.M., Cremers, D.: Efficient globally optimal 2D-to-3D deformable shape matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2185–2193 (2016)

  18. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1482–1489. IEEE (2005)

  19. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. 28(3), 1 (2009)

    Article  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Mahamud, S., Williams, L.R., Thornber, K.K., Xu, K.: Segmentation of multiple salient closed contours from real images. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 433–444 (2003)

    Article  Google Scholar 

  22. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)

    Article  Google Scholar 

  23. Parashar, S., Pizarro, D., Bartoli, A.: Isometric non-rigid shape-from-motion with Riemannian geometry solved in linear time. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2442–2454 (2017)

    Article  Google Scholar 

  24. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89(2–3), 248–265 (2010)

    Article  Google Scholar 

  25. Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32(4), 72 (2013)

    Article  MATH  Google Scholar 

  26. Sahillioğlu, Y., Yemez, Y.: Partial 3-D correspondence from shape extremities. Comput. Graph. Forum 33(6), 63–76 (2014)

    Article  Google Scholar 

  27. Shapiro, L.S., Brady, J.M.: Feature-based correspondence: an eigenvector approach. Image Vis. Comput. 10(5), 283–288 (1992)

    Article  Google Scholar 

  28. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  29. Smeets, D., Keustermans, J., Vandermeulen, D., Suetens, P.: meshSIFT: local surface features for 3D face recognition under expression variations and partial data. Comput. Vision Image Underst. 117(2), 158–169 (2013)

    Article  Google Scholar 

  30. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. 27(3), 21–31 (2007)

    Article  Google Scholar 

  31. Tung, T., Matsuyama, T.: Geodesic mapping for dynamic surface alignment. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 901–913 (2014)

    Article  Google Scholar 

  32. Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M., Kimmel, R., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)

  33. Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. arXiv preprint arXiv:1701.00669 (2017)

  34. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. (TOG) 28(5), 174 (2009)

    Article  Google Scholar 

  35. Xu, K., Kim, V.G., Huang, Q., Kalogerakis, E.: Data-driven shape analysis and processing. Comput. Graph. Forum 36(1), 101–132 (2017)

    Article  Google Scholar 

  36. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 382–389. IEEE (2010)

Download references

Acknowledgements

This research work was supported by China Natural Science Foundation (Grant No: 61502133). Part of the work is supported by Natural Science Foundation of Zhejiang Province (Grant Nos: LY19F020031, LY16F020029).The authors also thank the anonymous reviewers for their kind comments.

Funding

This study was funded by National Natural Science Foundation of China (Grant No.: 61502133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchang Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 18369 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Cheng, Z., Liu, F. et al. Maximum spatial–temporal isometric cluster for dynamic surface correspondence. Vis Comput 36, 785–798 (2020). https://doi.org/10.1007/s00371-019-01655-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01655-0

Keywords

Navigation