Skip to main content
Log in

Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Pavement condition information is a significant component in pavement management systems. Precise extraction of road degradations particularly cracks is a critical task for surface safety. Manual surveys, which are labor intensive and costly, have induced several researchers to investigate the use of image processing to achieve automated pavement distress ratings. In the context of fine structures extraction, we present in this paper a novel approach for road crack detection under real conditions using several systems installed differently on a vehicle. It is such an automatic and effective approach that relies on both photometric and geometric characteristics of cracks. Based on an edge detection technique to avoid the bad conditions of image acquisition and an examination algorithm to verify the presence of high concentration of cracking pixels, this approach allows in a first step to select pixels that have great probability of belonging to a crack. Indeed, the originality of this approach stems from the proposed way to compute a set of thin filaments connecting the pixels selected at the first step between them. Finally, a post-processing step is applied to refine the obtained result and confirm either the presence or the absence of cracks in the image. Our proposed approach provides very robust and precise results on 2D pavement images in a wide range of situations and in a fully unsupervised manner. Furthermore, its innovative aspect is reflected in its ability to analyze easily both 2D and 3D pavement images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Wang, K.C.P., Smadi, O.: Automated imaging technologies for pavement distress surveys. Transp. Res. E-Circ. (E-C156) (2011)

  2. Ryu, S.K., Kim, T., Kim, Y.R.: Image-based pothole detection system for its service and road management system. Math. Probl. Eng. (2015) https://doi.org/10.1155/2015/968361

  3. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection. IEEE Trans. Intell. Transp. Syst. 17(10), 2718–2729 (2016)

  4. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)

    Article  Google Scholar 

  5. Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712. IEEE (2016)

  6. Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M.: How to get pavement distress detection ready for deep learning? a systematic approach. In: Proceedings of the IEEE International Joint Conference on Neural Networks, Anchorage, AK, USA (2017)

  7. Kaddah, W., Ouerhani, Y., Alfalou, A., Desthieux, M., Brosseau, C., Gutierrez, C.: Road marking features extraction using the viapix® system. Opt. Commun. 371, 117–127 (2016)

    Article  Google Scholar 

  8. Oliveira, H., Correia, P.L.: Automatic road crack segmentation using entropy and image dynamic thresholding. In: 2009 17th European Signal Processing Conference, pp. 622–626. IEEE (2009)

  9. Subirats, P.: Conception et validation de méthodes de traitement d’images appliquées à la détection de fissures sur les images de surface de chaussées. PhD thesis, Nantes (2006)

  10. Nguyen, T.S., Avila, M., Begot, S.: Automatic detection and classification of defect on road pavement using anisotropy measure. In: 2009 17th European Signal Processing Conference, pp. 617–621. IEEE (2009)

  11. Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 14(1), 155–168 (2013)

    Article  Google Scholar 

  12. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from pavement images. Pattern Recognit. Lett. 33(3), 227–238 (2012)

    Article  Google Scholar 

  13. Tang, J., Gu, Y.: Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3026–3030. IEEE (2013)

  14. Yamaguchi, T., Nakamura, S., Hashimoto, S.: An efficient crack detection method using percolation-based image processing. In: 3rd IEEE Conference on Industrial Electronics and Applications, 2008. ICIEA 2008, pp. 1875–1880. IEEE (2008)

  15. Tanaka, N., Uematsu, K.: A crack detection method in road surface images using morphology. MVA 98, 17–19 (1998)

    Google Scholar 

  16. Sultani, W., Mokhtari, S., Yun, H.B.: Automatic pavement object detection using superpixel segmentation combined with conditional random field. IEEE Trans. Intell. Transp. Syst. 19(7), 2076–2085 (2017)

    Article  Google Scholar 

  17. Coudray, N., Karathanou, A., Chambon, S.: Multi-resolution approach for fine structure extraction: application and validation on road images. In: International Joint Conference on Computer Vision Theory and Applications, VISAPP (2010)

  18. Li, H., Song, D., Liu, Y., Li, B.: Automatic pavement crack detection by multi-scale image fusion. IEEE Trans. Intell. Transp. Syst. 20(6), 2025–2036 (2018)

    Article  Google Scholar 

  19. Subirats, P., Dumoulin, J., Legeay, V., Barba, D.: Automation of pavement surface crack detection with a matched filtering to define the mother wavelet function used. In: 2006 14th European Signal Processing Conference, pp. 1–5. IEEE (2006)

  20. McRobbie, S.G., Wright, M.A.: TTS initial review-review of survey methods. Published Project Report PPR 001 (2004)

  21. Kaddah, W., Elbouz, M., Ouerhani, Y., Baltazart, V., Desthieux, M., Alfalou, A.: Optimized minimal path selection (OMPS) method for automatic and unsupervised crack segmentation within two-dimensional pavement images. Vis. Comput. 35, 1–17 (2018)

    Google Scholar 

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  23. Lcms system. http://www.pavemetrics.com/fr/applications-fr/inspection-des-routes/lcms-fr/. Accessed 20 Oct 2018

  24. Amhaz, R.: Détection automatique de fissures dans des images de chaussée par sélection de chemins minimaux. PhD thesis, École centrale de Nantes (2015)

  25. Aigle-RN system. http://media.lcpc.fr/ext/pdf/sem/2008_jtr_aigle.pdf. Accessed 13 Sept 2017

  26. Viapix system. http://www.viapix.eu/. Accessed 10 July 2018

  27. Fernández, C., Fernández-Llorca, D., Sotelo, M.A.: A hybrid vision-map method for urban road detection. J. Adv. Transp. (2017)https://doi.org/10.1155/2017/7090549

  28. Mallot, H.A., Bülthoff, H.H., Little, J.J., Bohrer, S.: Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biol. Cybern. 64(3), 177–185 (1991)

    Article  Google Scholar 

  29. Nieto, M., Salgado, L., Jaureguizar, F., Cabrera, J.: Stabilization of inverse perspective mapping images based on robust vanishing point estimation. In: Intelligent Vehicles Symposium, 2007 IEEE, pp. 315–320. IEEE (2007)

  30. Muad, A.M., Hussain, A., Samad, S.A., Mustaffa, M.M., Majlis, B.Y.: Implementation of inverse perspective mapping algorithm for the development of an automatic lane tracking system. In: 2004 IEEE Region 10 Conference. TENCON 2004, pp. 207–210. IEEE (2004)

  31. Kaddah, W.: Apports de nouveaux outils de traitement d’images et de programmation pour le relevé automatique de dégradations sur chaussées. PhD thesis (2018). https://tel.archives-ouvertes.fr/tel-02130479/document. Accessed 28 May 2019

  32. Ross, A., Jain, A.K.: Multimodal biometrics: an overview. In: 2004 12th European Signal Processing Conference, pp. 1221–1224. IEEE (2004)

  33. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  34. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)

    Article  Google Scholar 

  35. Adjustment method using the mayer line. http://www.bibmath.net/dico/index.php?action=affiche&quoi=./m/mayer.html. Accessed 05 Feb 2016

  36. Chambon, S.: Image database available. https://www.irit.fr/Sylvie.Chambon/Crack_Detection_Database.html. Accessed 17 Nov 2018

  37. Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: Deepcrack: learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissam Kaddah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaddah, W., Elbouz, M., Ouerhani, Y. et al. Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images. Vis Comput 36, 1369–1384 (2020). https://doi.org/10.1007/s00371-019-01742-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01742-2

Keywords

Navigation