Abstract
Color features and local geometrical structures are the two basic image features which are sufficient to convey the image semantics. Both of these features show diverse nature on the different regions of a natural image. Traditional local motif patterns are standard tools to emphasize these local visual image features. These motif-based schemes consider either structural orientations or limited directional patterns which are not sufficient to realize the detailed local geometrical properties of an image. To address these issues, we have proposed a new multi-level colored directional motif histogram (MLCDMH) for devising a content-based image retrieval scheme. The proposed scheme extracts local structural features at three different levels. Initially, MLCDMH scheme extracts directional structural patterns from a \(3 \times 3\) pixel grids of an image. This reflects the \(9^9\) different structural arrangements using 28 directional patterns. Next, we have used a weighted neighboring similarity (WNS) scheme to exploit the uniqueness of each motif pixel in its local surrounding. The WNS scheme will compute the importance of each directional motif pattern in its \(3 \times 3\) local neighborhood. In the last level, we have fused all directional motif images into a single directional difference matrix which reflects the local structural and directional motif features in detail and also reduces the computation overhead. The MLCDMH considers all possible permutations and rotations of the motif patterns to generate rotational invariant structural features. The image retrieval performance of this proposed scheme has been evaluated using different Corel/natural, object, texture and heterogeneous image datasets. The results of the retrieval experiments have shown satisfactory improvement over other motif- and non-motif-based CBIR approaches.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Swain, M.J.: Interactive indexing into image databases. In: Proceedings of SPIE 1908, Storage and Retrieval for Image and Video Databases (1993). https://doi.org/10.1117/12.143659
Worring, M., Smeulders, A.W., Gupta, A., Santini, S., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380 (2000)
Gudivada, V.N., Raghavan, V.V.: Content based image retrieval systems. Computer 28(9), 18–22 (1995)
Lin, C.-H., Chen, C.-C., Lee, H.-L., Liao, J.-R.: Fast k-means algorithm based on a level histogram for image retrieval. Expert Syst. Appl. 41(7), 3276–3283 (2014)
Anuar, F.M., Setchi, R., Lai, Y.: Trademark image retrieval using an integrated shape descriptor. Expert Syst. Appl. 40(1), 105–121 (2013)
Penatti, O.A.B., Valle, E., Torres, R.S.: Comparative study of global color and texture descriptors for web image retrieval. J. Vis. Commun. Image Represent. 23(2), 359–380 (2012)
Vipparthi, S.K., Nagar, S.K.: Expert image retrieval system using directional local motif XoR patterns. Expert Syst. Appl. 41(17), 8016–8026 (2014)
Varish, N., Pradhan, J., Pal, A.K.: Image retrieval based on non-uniform bins of color histogram and dual tree complex wavelet transform. Multimed. Tools Appl. 76(14), 15885–15921 (2017)
Chun, Y.D., Kim, N.C., Jang, I.H.: Content-based image retrieval using multiresolution color and texture features. IEEE Trans. Multimed. 10(6), 1073–1084 (2008)
Lu, Z.-M., Burkhardt, H.: Colour image retrieval based on DCT-domain vector quantisation index histograms. Electron. Lett. 41(1), 956–957 (2005)
Lu, T.-C., Chang, C.-C.: Color image retrieval technique based on color features and image bitmap. Inf. Process. Manag. 43(2), 461–472 (2007). Special issue on AIRS2005: Information Retrieval Research in Asia
Yue, J., Li, Z., Liu, L., Fu, Z.: Content-based image retrieval using color and texture fused features. Math. Comput. Model. 54(3), 1121–1127 (2011). Mathematical and Computer Modeling in agriculture (CCTA 2010)
Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using rotated wavelet filters. Pattern Recognit. Lett. 28(10), 1240–1249 (2007)
Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)
Krommweh, J.: Tetrolet transform: a new adaptive haar wavelet algorithm for sparse image representation. J. Vis. Commun. Image Represent. 21(4), 364–374 (2010)
Han, J., Ma, K.-K.: Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis. Comput. 25(9), 1474–1481 (2007)
He, Z., You, X., Yuan, Y.: Texture image retrieval based on non-tensor product wavelet filter banks. Signal Process. 89(8), 1501–1510 (2009)
Wang, X.-Y., Zhang, B.-B., Yang, H.-Y.: Content-based image retrieval by integrating color and texture features. Multimed. Tools Appl. 68(3), 545–569 (2014)
Li, C., Huang, Y., Zhu, L.: Color texture image retrieval based on Gaussian copula models of Gabor wavelets. Pattern Recognit. 64, 118–129 (2017)
Sadeghi, B., Jamshidi, K., Vafaei, A., Monadjemi, S.A.: A local image descriptor based on radial and angular gradient intensity histogram for blurred image matching. Vis. Comput. 35(10), 1373–1391 (2019). https://doi.org/10.1007/s00371-018-01616-z
Jai, A.K., Vailay, A.: Shape-based retrieval: a case study with trademark image databases. Pattern Recognit. 31(9), 1369–1390 (1998)
Pradhan, J., Pal, A.K., Banka, H.: A prominent object region detection based approach for CBIR application. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 447–452. IEEE (2016)
Won, C.S., Park, D.K., Park, S.-J.: Efficient use of MPEG-7 edge histogram descriptor. ETRI J. 24(1), 23–30 (2002)
Pradhan, J., Pal, A.K., Banka, H.: Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval. Multimed. Tools Appl. 78(2), 1685–1717 (2019). https://doi.org/10.1007/s11042-018-6246-4
Chen, L., Wang, R., Yang, J., Xue, L., Hu, M.: Multi-label image classification with recurrently learning semantic dependencies. Vis. Comput. 35(10), 1361–1371 (2019). https://doi.org/10.1007/s00371-018-01615-0
Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognit. 40(1), 262–282 (2007)
An, F., Liu, Z.: Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM. Vis. Comput. 1–16 (2019). https://doi.org/10.1007/s00371-019-01635-4
Mohammed, M.M., Badr, A., Abdelhalim, M.B.: Image classification and retrieval using optimized pulse-coupled neural network. Expert Syst. Appl. 42(11), 4927–4936 (2015)
Thuy, Q.D.T., Huu, Q.N., Van, C.P., Quoc, T.N.: An efficient semantic-related image retrieval method. Expert Syst. Appl. 72, 30–41 (2017)
Khatami, A., Babaie, M., Tizhoosh, H.R., Khosravi, A., Nguyen, T., Nahavandi, S.: A sequential search-space shrinking using cnn transfer learning and a radon projection pool for medical image retrieval. Expert Syst. Appl. 100, 224–233 (2018)
Cheng, S., Lai, H., Wang, L., Qin, J.: A novel deep hashing method for fast image retrieval. Vis. Comput. 35(9), 1255–1266 (2019)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)
Takala, V., Ahonen, T., Pietikäinen, M.: Block-Based Methods for Image Retrieval Using Local Binary Patterns, pp. 882–891. Springer, Berlin (2005)
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)
Subrahmanyam, M., Maheshwari, R.P., Balasubramanian, R.: Expert system design using wavelet and color vocabulary trees for image retrieval. Expert Syst. Appl. 39(5), 5104–5114 (2012)
Vipparthi, S.K., Nagar, S.K.: Multi-joint histogram based modelling for image indexing and retrieval. Comput. Electr. Eng. 40(8), 163–173 (2014)
Bhunia, A.K., Bhattacharyya, A., Banerjee, P., Roy, P.P., Murala, S.: A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. arXiv preprint arXiv:1801.00879 (2018)
Feng, Q., Hao, Q., Chen, Y., Yi, Y., Wei, Y., Dai, J.: Hybrid histogram descriptor: a fusion feature representation for image retrieval. Sensors 18(6), 1943 (2018)
Obulesu, A., Vijay Kumar, V., Sumalatha, L.: Content based image retrieval using multi motif co-occurrence matrix. Int. J. Image Graph. Signal Process. 10(4), 59 (2018)
Jhanwar, N., Chaudhuri, S., Seetharaman, G., Zavidovique, B.: Content based image retrieval using motif cooccurrence matrix. Image Vis. Comput. 22(14), 1211–1220 (2004). The Indian Conference on Vision, Graphics and Image Processing
Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 985–1002 (2008)
Liu, G.-H., Yang, J.-Y., Li, Z.Y.: Content-based image retrieval using computational visual attention model. Pattern Recognit. 48(8), 2554–2566 (2015)
tropical-fruits-db-1024x768.tar.gz. http://www.ic.unicamp.br/~rocha/pub/downloads/tropical-fruits-DB-1024x768.tar.gz/. Accessed 18 Aug 2017
site www, vision & image, lagis-vi.univ-lille1.fr (2017). http://lagis-vi.univlille1.fr/datasets/outex.html. Accessed 18 Aug 2017
Everingham, M., Van, L.G., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Yao, C.-H., Chen, S.-Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recognit. 36(4), 913–929 (2003)
Liu, G.-H., Zhang, L., Hou, Y.-K., Li, Z.-Y., Yang, J.-Y.: Image retrieval based on multi-texton histogram. Pattern Recognit. 43(7), 2380–2389 (2010)
Liu, G.-H., Li, Z.-Y., Zhang, L., Xu, Y.: Image retrieval based on micro-structure descriptor. Pattern Recognit. 44(9), 2123–2133 (2011). Computer Analysis of Images and Patterns
Liu, G.-H., Yang, J.-Y.: Content-based image retrieval using color difference histogram. Pattern Recognit. 46(1), 188–198 (2013)
Zeng, S., Huang, R., Wang, H., Kang, Z.: Image retrieval using spatiograms of colors quantized by gaussian mixture models. Neurocomputing 171(Supplement C), 673–684 (2016)
Galshetwar, G.M., Waghmare, L.M., Gonde, A.B., Murala, S.: Local energy oriented pattern for image indexing and retrieval. J. Vis. Commun. Image Represent. 64, 102615 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2014)
Funding
The authors have not received any funding from any organization.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pradhan, J., Ajad, A., Pal, A.K. et al. Multi-level colored directional motif histograms for content-based image retrieval. Vis Comput 36, 1847–1868 (2020). https://doi.org/10.1007/s00371-019-01773-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-019-01773-9