Skip to main content
Log in

An improved correlation filter tracking method with occlusion and drift handling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

A Correction to this article was published on 28 January 2020

This article has been updated

Abstract

Despite remarkable progress, visual object tracking is still a challenging task as objects usually suffer from significant appearance changes, fast motion, and serious occlusion. In this paper, we propose a correlation filter-based tracking method with reliability evaluation and re-detection mechanism (CF-RERM) to deal with drift and occlusion problems. We first propose a criterion that uses the fluctuation trend of the response values, the displacement difference of the object, and the peak-to-sidelobe ratio to comprehensively evaluate the reliability of the tracking process. Then, a re-detection mechanism with a two-stage screening strategy is proposed for implementing the re-detection task when the criterion is triggered. Experimental results show that our method has achieved considerable performance in terms of accuracy and success rate on widely used OTB-50, OTB-100 and Temple-Color-128 tracking benchmark dataset. In addition, CF-RERM is able to achieve real-time tracking speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Change history

  • 28 January 2020

    Figures 1, 3 and Table 1 contain errors. The correct versions are given below.

References

  1. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)

    Article  Google Scholar 

  2. Avidan, S.: Support vector tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 184–191 (2001)

  3. Mei, X., Ling, H.: Robust visual tracking using \(\ell 1\) minimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1436–1443 (2009)

  4. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nebehay, G., Pflugfelder, R.: Clustering of static-adaptive correspondences for deformable object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2784–2791 (2015)

  6. Liu, W., Li, J., Shi, Z., Chen, X., Chen, X.: Oversaturated part-based visual tracking via spatio-temporal context learning. Appl. Opt. 55(25), 6960–6968 (2016)

    Article  Google Scholar 

  7. Bai, B., Li, Y., Fan, J., Price, C., Shen, Q.: Object tracking based on incremental Bi-2DPCA learning with sparse structure. Appl. Opt. 54(10), 2897–2907 (2015)

    Article  Google Scholar 

  8. Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)

    Article  Google Scholar 

  9. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)

    Article  Google Scholar 

  10. Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  11. Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  12. Zitnick, C.L., Dollar, P.: Edge boxes: locating object proposals from edges. In: Proceedings of the European Conference on Computer Vision, pp. 391–405 (2014)

  13. Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

  14. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  15. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

  17. Hester, C.F., Casasent, D.: Multivariant technique for multiclass pattern recognition. Appl. Opt. 19(11), 1758–1761 (1980)

    Article  Google Scholar 

  18. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the European Conference on Computer Vision, pp. 702–715 (2012)

  19. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  20. Danelljan, M., Hager, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceeding of the British Machine Vision Conference, pp. 98–111 (2014)

  21. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of the European Conference on Computer Vision, pp. 254–265 (2014)

  22. Ma, C., Yang, X., Zhang, C.: Long-term correlation tracking. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)

  23. Choi, J., Chang, H.J., Yun, S.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 4828–4837 (2017)

  24. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2015)

    Article  Google Scholar 

  25. Chen, D., Yuan, Z., Wu, Y., Zhang, G., Zheng, N.: Constructing adaptive complex cells for robust visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1113–1120 (2013)

  26. Holzer, S., Ilic, S., Navab, N.: Multilayer adaptive linear predictors for real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 105–117 (2013)

    Article  Google Scholar 

  27. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  28. Zhang, J., Ma, S., Sclaroff, S.: Meem: Robust tracking via multiple experts using entropy minimization. In: Proceedings of the European Conference on Computer Vision, pp. 188–203 (2014)

  29. Dong, X., Shen, J., Yu, D., Wang, W., Liu, J., Huang, H.: Occlusion-aware real-time object tracking. IEEE Trans. Multimed. 19(4), 763–771 (2017)

    Article  Google Scholar 

  30. Jun, Z., Gang, X., Xing, Z., et al.: An improved long-term correlation tracking method with occlusion handling. Chin. Opt. Lett. 17(3), 31001–31006 (2019)

    Article  Google Scholar 

  31. Zhu, Z., Wang, Q., Li, B.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision, pp. 103–119 (2018)

  32. Lukezic, A., Zajc L.C., Vojir, T.: FuCoLoT—a fully-correlational long-term tracker. In: Proceedings of the Asian Conference on Computer Vision, pp. 595–611 (2018)

  33. Zhang, Y., Wang, D., Wang, L.: Learning regression and verification networks for long-term visual tracking. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, arXiv: Computer Vision and Pattern Recognition (2018)

  34. Sun, C., Wang, D., Lu, H.: Correlation Tracking via Joint Discrimination and Reliability Learning. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 489–497 (2018)

  35. Dai, K., Wang, D., Lu, H.: Visual tracking via adaptive spatially-regularized correlation filters. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 4670–4679 (2019)

  36. Bhat, G., Johnander, J., Danelljan, M.: Unveiling the power of deep tracking. In: Proceedings of the European Conference on Computer Vision, pp. 493–509 (2018)

  37. Gray, R.M.: Toeplitz and circulant matrices: a review. Now Publishers 77(3), 125–141 (2006)

    MATH  Google Scholar 

  38. Dollar, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  39. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 2756–2759 (2010)

  40. Ning, J., Yang, J., Jiang, S.: Object tracking via dual linear structured SVM and explicit feature map. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 4266–4274 (2016)

  41. Bertinetto, L., Valmadre, J., Golodetz, S.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)

  42. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of the IEEE computer vision and pattern recognition, pp. 4800–4808 (2017)

  43. Zhang, B., Li, Z., Cao, X.: Output constraint transfer for kernelized correlation filter in tracking. IEEE Trans. Syst. Man Cybern. 47(4), 693–703 (2017)

    Article  Google Scholar 

  44. Bao, C., Wu, Y., Ling, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 1830–1837 (2012)

  45. Mueller, M., Smith, N., Ghanem, B.: A Benchmark and simulator for UAV tracking. In: Proceedings of the European Conference on Computer Vision, pp. 445–461 (2016)

  46. Kristan, M., Matas, J., Leonardis, A.: A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2137–2155 (2016)

    Article  Google Scholar 

  47. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 1822–1829 (2012)

  48. Babenko, B., Yang, M., Belongie S.J.: Visual tracking with online multiple instance learning. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 983–990 (2009)

  49. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 798–805 (2006)

  50. Kwon, J., Lee K.M.: Visual tracking decomposition. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 1269–1276 (2010)

  51. Zhang, K., Zhang, L., Yang, M.: Real-time compressive tracking. In: Proceedings of the European Conference on Computer Vision, pp. 864–877 (2012)

Download references

Acknowledgements

The authors would like to thank the editors and anonymous reviewers for their constructive comments and suggestions, which greatly helped improve the overall quality of the manuscript.

Funding

This work is supported by National Natural Science Foundation of China (No. 61801319), Sichuan University of Science and Engineering Talent Introduction Project (No. 2017RCL11), the Opening Project of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things (No. 2017WZJ01), the Major Frontier Project of Science and Technology Plan of Sichuan Province (No. 2018JY0512), the Education Agency Project of Sichuan Province (No.18ZB0419), and the Sichuan Institute of Technology Graduate Innovation Foundation (No. D10-501128).

Author information

Authors and Affiliations

Authors

Contributions

JL conceived the main idea, designed the algorithm, performed the experiments, analyzed the data, and wrote the manuscript. ZL and XX proofread the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhongqiang Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Luo, Z. & Xiong, X. An improved correlation filter tracking method with occlusion and drift handling. Vis Comput 36, 1909–1926 (2020). https://doi.org/10.1007/s00371-019-01776-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01776-6

Keywords

Navigation