Skip to main content

Advertisement

Log in

GenSSS: a genetic algorithm for measured subsurface scattering representation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel genetic algorithm-based approach for the compact representation of heterogeneous, optically thick, translucent materials. Utilizing genetic optimization, we also find the best transformation to represent measured subsurface scattering data. We employ a factored subsurface scattering representation, based on a singular value decomposition (SVD), separately applying the SVD per-color channel of the transformed profiles. In order to achieve a compact, accurate representation, we perform this iteratively on the model errors. By allowing the number of iterations to be customized, our representation provides a mechanism to trade the visual quality possible against the level of compression achieved through our representation. We validate our approach by analyzing a range of real-world translucent materials, geometries and lighting conditions. For heterogeneous translucent materials, we further demonstrate that for the same level of compression, our method achieves greater visual accuracy than alternative techniques. Finally, we present an application of our factored representation, which can be used to convert heterogeneous materials into homogeneous material representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arbree, A., Walter, B., Bala, K.: Heterogeneous subsurface scattering using the finite element method. IEEE Trans. Vis. Comput. Graph. 17(7), 956–969 (2011)

    Article  Google Scholar 

  2. Bilgili, A., Öztürk, A., Kurt, M.: A general BRDF representation based on tensor decomposition. Comput. Graph. Forum 30(8), 2427–2439 (2011)

    Article  Google Scholar 

  3. Bowers, J., Wang, R., Wei, L.Y., Maletz, D.: Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29(6), 166:1–166:10 (2010)

    Article  Google Scholar 

  4. Brady, A., Lawrence, J., Peers, P., Weimer, W.: GenBRDF: discovering new analytic BRDFs with genetic programming. ACM Trans. Graph. 33(4), 114:1–1141:1 (2014)

    Article  Google Scholar 

  5. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Visual Comput. 28(6–8), 701–711 (2012)

    Article  Google Scholar 

  6. d’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. ACM Trans. Graphic. 30(4), 56:1–56:14 (2011). (Proc. SIGGRAPH ’11)

    Google Scholar 

  7. d’Eon, E., Luebke, D.P., Enderton, E.: Efficient rendering of human skin. In: Proc. of Eurographics Symposium on Rendering, pp. 147–157 (2007)

  8. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graphic. 24(3), 1032–1039 (2005). (Proc. SIGGRAPH ’05)

    Article  Google Scholar 

  9. Fleming, R.W., Jensen, H.W., Bülthoff, H.H.: Perceiving translucent materials. In: Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, APGV ’04, pp. 127–134 (2004)

  10. Frisvad, J.R., Hachisuka, T., Kjeldsen, T.K.: Directional dipole model for subsurface scattering. ACM Trans. Graph. 34(1), 5:1–5:12 (2014)

    Article  Google Scholar 

  11. Fuchs, C., Goesele, M., Chen, T., Seidel, H.P.: An empirical model for heterogeneous translucent objects. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05 (2005)

  12. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.P.: DISCO: acquisition of translucent objects. ACM Trans. Graphic. 23(3), 835–844 (2004). (Proc. SIGGRAPH ’04)

    Article  Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston (1989)

    MATH  Google Scholar 

  14. Guarnera, D., Guarnera, G.C., Toscani, M., Glencross, M., Li, B., Hardeberg, J.Y., Gegenfurtner, K.: Perceptually validated cross-renderer analytical BRDF parameter remapping. In: IEEE Transactions on Visualization and Computer Graphics, p. 1. https://doi.org/10.1109/TVCG.2018.2886877. http://doi.ieeecomputersociety.org/. (Early Access)

  15. Jakob, W.: Mitsuba renderer (2013). http://www.mitsuba-renderer.org. Accessed 21 Jan 2020

  16. Jakob, W., Arbree, A., Moon, J.T., Bala, K., Marschner, S.: A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graphic. 29(4), 53:1–53:13 (2010). (Proc. SIGGRAPH ’10)

    Article  Google Scholar 

  17. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graphic. 21(3), 576–581 (2002). (Proc. SIGGRAPH ’02)

    Article  Google Scholar 

  18. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proc. SIGGRAPH ’01, pp. 511–518 (2001)

  19. Jimenez, J., Sundstedt, V., Gutierrez, D.: Screen-space perceptual rendering of human skin. ACM Trans. Appl. Percept. 6(4), 23:1–23:15 (2009). (Proc. APGV ’09)

    Article  Google Scholar 

  20. Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. IEEE Comput. Graph. Appl. 30(4), 32–41 (2010)

    Article  Google Scholar 

  21. Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu, X.C., der Pahlen, J., Wimmer, M., Gutierrez, D.: Separable subsurface scattering. Comput. Graph. Forum 34(6), 188–197 (2015)

    Article  Google Scholar 

  22. Kajiya, J.T.: The rendering equation. Comput. Graph. 20(4), 143–150 (1986). (Proc. SIGGRAPH ’86)

    Article  Google Scholar 

  23. Kautz, J., McCool, M.D.: Interactive rendering with arbitrary BRDFs using separable approximations. In: Proc. of Eurographics Workshop on Rendering, pp. 247–260. Granada, Spain (1999)

  24. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kurt, M., Öztürk, A., Peers, P.: A compact tucker-based factorization model for heterogeneous subsurface scattering. In: Proceedings of the 11th Theory and Practice of Computer Graphics, TPCG ’13, pp. 85–92 (2013)

  26. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graphic. 25(3), 735–745 (2006). (Proc. SIGGRAPH ’06)

    Article  Google Scholar 

  27. Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R.: Efficient BRDF importance sampling using a factored representation. ACM Trans. Graphic. 23(3), 496–505 (2004). (Proc. SIGGRAPH ’04)

    Article  Google Scholar 

  28. Masia, B., Munoz, A., Tolosa, A., Anson, O., Lopez-Moreno, J., Jimenez, J., Gutierrez, D.: Genetic algorithms for estimation of reflectance parameters. In: Proceedings of the 25th Spring Conference on Computer Graphics, Posters, SCCG ’09, pp. 39–44 (2009)

  29. McCool, M.D., Ang, J., Ahmad, A.: Homomorphic factorization of BRDFs for high-performance rendering. In: Proc. SIGGRAPH ’01, pp. 171–178. ACM (2001)

  30. Mertens, T., Kautz, J., Bekaert, P., Reeth, F.V., Seidel, H.P.: Efficient rendering of local subsurface scattering. Comput. Graph. Forum 24(1), 41–49 (2005)

    Article  Google Scholar 

  31. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  32. Munoz, A., Masia, B., Tolosa, A., Gutierrez, D.: Single-image appearance acquisition using genetic algorithms. In: Proceedings of the IADIS International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing, IADIS ’09, pp. 24–32 (2009)

  33. Nakamoto, K., Koike, T.: Which BSSRDF model is better for heterogeneous materials? In: Proceedings of the ACM SIGGRAPH 2018, Posters, SIGGRAPH ’18, pp. 44:1–44:2 (2018)

  34. Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical considerations and nomenclature for reflectance. Monograph, National Bureau of Standards (US) (1977)

  35. Pajarola, R., Suter, S.K., Ruiters, R.: Tensor Approximation in Visualization and Computer Graphics. In: EG 2013 - Tutorials, pp. t6. Eurographics Association, Girona, Spain (2013)

  36. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graphic. 25(3), 746–753 (2006). (Proc. SIGGRAPH ’06)

    Article  Google Scholar 

  37. Richardson, I.E.: Video Codec Design: Developing Image and Video Compression Systems. Wiley, New York (2002)

    Book  Google Scholar 

  38. Ruiters, R., Klein, R.: BTF compression via sparse tensor decomposition. Comput. Graph. Forum 28(4), 1181–1188 (2009)

    Article  Google Scholar 

  39. Ruiters, R., Schwartz, C., Klein, R.: Data driven surface reflectance from sparse and irregular samples. Comput. Graph. Forum 31(2), 315–324 (2012)

    Article  Google Scholar 

  40. Sone, H., Hachisuka, T., Koike, T.: Parameter estimation of BSSRDF for heterogeneous materials. In: Peytavie, A., Bosch, C. (eds.) Proceedings of the Eurographics 2017, Short Papers, pp. 73–76. The Eurographics Association (2017)

  41. Song, Y., Tong, X., Pellacini, F., Peers, P.: SubEdit: a representation for editing measured heterogeneous subsurface scattering. ACM Trans. Graphic. 28(3), 31:1–31:10 (2009). (Proc. SIGGRAPH ’09)

    Article  Google Scholar 

  42. Song, Y., Wang, W.: A data-driven model for anisotropic heterogeneous subsurface scattering. In: Proceedings of the 5th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–7 (2013)

  43. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic BRDFs. ACM Trans. Graphic. 26(3), 27:1–27:10 (2007). (Proc. SIGGRAPH ’07)

    Google Scholar 

  44. Suter, S.K., Iglesias Guitian, J.A., Marton, F., Agus, M., Elsener, A., Zollikofer, C.P.E., Gopi, M., Gobbetti, E., Pajarola, R.: Interactive multiscale tensor reconstruction for multiresolution volume visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2135–2143 (2011)

    Article  Google Scholar 

  45. Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.Y.: Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graphic. 24(3), 1054–1061 (2005). (Proc. SIGGRAPH ’05)

    Article  Google Scholar 

  46. Vasilescu, M.A.O., Terzopoulos, D.: TensorTextures: multilinear image-based rendering. ACM Trans. Graphic. 23(3), 336–342 (2004). (Proc. SIGGRAPH ’04)

    Article  Google Scholar 

  47. Wang, H., Wu, Q., Shi, L., Yu, Y., Ahuja, N.: Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graphic. 24(3), 527–535 (2005). (Proc. SIGGRAPH ’05)

    Article  Google Scholar 

  48. Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.M.: Real-time homogenous translucent material editing. Comput. Graph. Forum 26(3), 545–552 (2007)

    Article  Google Scholar 

  49. Yan, L.Q., Zhou, Y., Xu, K., Wang, R.: Accurate translucent material rendering under spherical Gaussian lights. Comput. Graph. Forum 31(7), 2267–2276 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their valuable comments, Mashhuda Glencross for the help with preparing this work, and the discussions on GAs. The author would also like to thank Pieter Peers et al. [36] and Ying Song et al. [41] for sharing their measured subsurface scattering data sets. This work was supported by the Scientific and Technical Research Council of Turkey (Project No: 119E092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kurt.

Ethics declarations

Conflicts of interest

The author declares that he has complied with ethical standards and has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, M. GenSSS: a genetic algorithm for measured subsurface scattering representation. Vis Comput 37, 307–323 (2021). https://doi.org/10.1007/s00371-020-01800-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01800-0

Keywords

Navigation