Skip to main content

Advertisement

Log in

Modified artificial bee colony algorithms for solving multiple circle detection problem

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Determining circular shapes from digital images is one of the most required operations in computer vision and its applications. Various techniques including evolutionary and swarm intelligence-based algorithms have been introduced and successfully used over the past decade for detecting single or multiple circles. In this study, two different circle candidate list generation approaches that are based on generating a combination between abandoned food sources and the obtained food sources in the final colony have been proposed and integrated into the workflow of the standard implementation of the artificial bee colony (ABC) algorithm. Experimental studies on a set of real and synthetic images showed that the proposed list generation approaches improved the solving capabilities of ABC algorithm and decreased the total error values related to the discovered circles compared to the ABC-based implementation for which a circle or circles are selected from a candidate list containing only abandoned food sources, genetic algorithm, bacterial foraging optimization algorithm and an improved version of the Hough transform-based circle detection technique called randomized Hough transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adlin Sharo, T., Raimond, K.: Enhancing degraded color images using fuzzy logic and artificial bee colony. Int. J. Comput. Eng. Res. 3(3), 356–361 (2013)

    Google Scholar 

  2. Agrawal, S., Soni, S.: Noisy image segmentation based on genetic artificial bee colony algorithm. Int. J. Comput. Sci. Eng. Technol. 5(7), 754–763 (2014)

    Google Scholar 

  3. Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013). https://doi.org/10.1016/j.asoc.2012.03.072

    Article  Google Scholar 

  4. Akay, B., Karaboga, D.: A survey on the applications of artificial bee colony in signal, image, and video processing. Signal Image Video Process. 9(4), 967–990 (2015). https://doi.org/10.1007/s11760-015-0758-4

    Article  Google Scholar 

  5. Alrosan, A., Norwawi, N., Ismail, W., Alomoush, W.: Artificial bee colony based fuzzy clustering algorithms for mri image segmentation. In: International Conference on Advances in Computer Science and Electronics Engineering—CSEE, pp. 225–228 (2014)

  6. Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recognit. Lett. 27(6), 652–657 (2006). https://doi.org/10.1016/j.patrec.2005.10.003

    Article  Google Scholar 

  7. Badem, H., Basturk, A., Caliskan, A., Yuksel, M.E.: A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited-memory BFGS optimization algorithms. Neurocomputing 266, 506–526 (2017). https://doi.org/10.1016/j.neucom.2017.05.061

    Article  Google Scholar 

  8. Cao, Y.F., Yu, W.Y., Xiao, Y.H., Chen, Y.C., Feng, J.C.: Image segmentation using artificial bee colony and fast fuzzy \(c\)-means algorithms. Adv. Sci. Lett. 6(1), 841–844 (2012). https://doi.org/10.1166/asl.2012.2294

    Article  Google Scholar 

  9. Celik, M., Koylu, F., Karaboga, D.: Coabcminer: an algorithm for cooperative rule classification system based on artificial bee colony. Int. J. Artif. Intell. Tools 25(01), 1–50 (2016). https://doi.org/10.1142/S0218213015500281

    Article  Google Scholar 

  10. Chandrakala, D., Sumathi, S.: Application of artificial bee colony optimization algorithm for image classification using color and texture feature similarity fusion. ISRN Artif. Intell. (2012). https://doi.org/10.5402/2012/426957

    Article  Google Scholar 

  11. Charansiriphaisan, K., Chiewchanwattana, S., Sunat, K.: A comparative study of improved artificial bee colony algorithms applied to multilevel image thresholding. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/927591

    Article  Google Scholar 

  12. Cuevas, E., Gonzalez, A., Zaldivar, D., Perez-Cisneros, M.: An optimisation algorithm based on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 7(6), 402–407 (2015). https://doi.org/10.1504/IJBIC.2015.073178

    Article  Google Scholar 

  13. Cuevas, E., Ortega-Sanchez, N., Zaldivar, D., Perez-Cisneros, M.: Circle detection by harmony search optimization. J. Intell. Robot. Syst. 66(3), 359–376 (2012). https://doi.org/10.1007/s10846-011-9611-3

    Article  Google Scholar 

  14. Cuevas, E., Osuna-Enciso, V., Wario, F., Zaldivar, D., Perez-Cisneros, M.: Automatic multiple circle detection based on artificial immune systems. Expert Syst. Appl. 39(1), 713–722 (2012). https://doi.org/10.1016/j.eswa.2011.07.063

    Article  Google Scholar 

  15. Cuevas, E., Sencion-Echauri, F., Zaldivar, D., Perez-Cisneros, M.: Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput. 16(2), 281–296 (2012). https://doi.org/10.1007/s00500-011-0741-0

    Article  Google Scholar 

  16. Cuevas, E., Zaldivar, D., Perez-Cisneros, M.: The Metaheuristic Algorithm of the Locust-Search, pp. 57–76. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-89309-9-4

    Book  Google Scholar 

  17. Cuevas, E., Zaldivar, D., Perez-Cisneros, M., Ramirez-Ortegon, M.: Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011). https://doi.org/10.1007/s10044-010-0183-9

    Article  MathSciNet  Google Scholar 

  18. Dasgupta, S., Das, S., Biswas, A., Abraham, A.: Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Comput. 14(11), 1151–1164 (2010). https://doi.org/10.1007/s00500-009-0508-z

    Article  Google Scholar 

  19. Diaz-Cortes, M.A., Cuevas, E., Rojas, R.: Clonal selection algorithm applied to circle detection. In: Kacprzy, J., Jain, L.C. (eds.) Engineering Applications of Soft Computing, pp. 143–164. Springer, Berlin (2017)

    Chapter  Google Scholar 

  20. Dinerstein, J., Egbert, P.K., Cline, D.: Enhancing computer graphics through machine learning: a survey. Vis. Comput. 23(1), 25–43 (2007). https://doi.org/10.1007/s00371-006-0085-4

    Article  Google Scholar 

  21. Fazli, S., Ghiri, S.F.: Automatic circle detection in digital images using artificial bee colony algorithm. In: International Conference on Advances in Computer and Electrical Engineering, pp. 21–24. Manila (2012)

  22. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006). https://doi.org/10.1109/TPAMI.2006.79

    Article  Google Scholar 

  23. Horng, M.H.: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst. Appl. 38(11), 13785–13791 (2011). https://doi.org/10.1016/j.eswa.2011.04.180

    Article  Google Scholar 

  24. Karaboga, D., Akay, B.: Artificial bee colony algorithm for training feed forward neural networks. In: IEEE 15th Signal Processing and Communication Applications Conference, pp. 1–4. IEEE (2007)

  25. Karaboga, D., Aslan, S.: A discrete artificial bee colony algorithm for detecting transcription factor binding sites in dna sequences. Genet. Mol. Res. 15(02), 1–11 (2016). https://doi.org/10.4238/gmr.15028645

    Article  Google Scholar 

  26. Karaboga, D., Aslan, S.: Discovery of conserved regions in dna sequences by artificial bee colony (ABC) algorithm based methods. Nat. Comput. 18, 333–350 (2018). https://doi.org/10.1007/s11047-018-9674-1

    Article  MathSciNet  Google Scholar 

  27. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. J. Frankl. Inst. 364(4), 328–348 (2009). https://doi.org/10.1016/j.jfranklin.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, F.-F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178 (2004). https://doi.org/10.1109/CVPR.2004.383

  29. Lin, J.S., Wu, S.H.: Fuzzy artificial bee colony system with cooling schedule for the segmentation of medical images by using of spatial information. Res. J. Appl. Sci. Eng. Technol. 4(17), 2973–2980 (2012)

    Google Scholar 

  30. Lopez, A., Cuevas, F.J.: Automatic multi-circle detection on images using the teaching learning based optimisation algorithm. IET Comput. Vis. 12(8), 1188–1199 (2018). https://doi.org/10.1049/iet-cvi.2018.5193

    Article  Google Scholar 

  31. Luque-Chang, A., Cuevas, E., Fausto, F., Zaldivar, D., Perez, M.: Social spider optimization algorithm: modifications, applications, and perspectives. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/6843923

    Article  Google Scholar 

  32. Manda, K., Satapathy, S.C., Rao, K.R.: Artificial bee colony based image clustering. In: Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012, pp. 29–37 (2012)

  33. Ozturk, C., Aslan, S.: A new artificial bee colony algorithm to solve the multiple sequence alignment problem. Int. J. Data Min. Bioinform. 14(4), 332–353 (2016). https://doi.org/10.1504/IJDMB.2016.075823

    Article  Google Scholar 

  34. Ozturk, C., Hancer, E., Karaboga, D.: Improved clustering criterion for image clustering with artificial bee colony algorithm. Pattern Anal. Appl. 18(3), 587–599 (2015). https://doi.org/10.1007/s10044-014-0365-y

    Article  MathSciNet  Google Scholar 

  35. Sahin, O., Akay, B.: Comparisons of metaheuristic algorithms and fitness functions on software test data generation. Appl. Soft Comput. 49, 1202–1214 (2016). https://doi.org/10.1016/j.asoc.2016.09.045

    Article  Google Scholar 

  36. Shanthi, S., Bhaskaran, V.M.: Modified artificial bee colony based feature selection: a new method in the application of mammogram image classification. Int. J. Sci. Eng. Technol. Res. 3(6), 1664–1667 (2014)

    Google Scholar 

  37. Tran, T.T., Cao, V.T., Laurendeau, D.: eSphere: extracting spheres from unorganized point clouds. Vis. Comput. 32(10), 1205–1222 (2016). https://doi.org/10.1007/s00371-015-1157-0

    Article  Google Scholar 

  38. Wang, G., Ren, G., Jiang, L., Quan, T.: Hole-based traffic sign detection method for traffic signs with red rim. Vis. Comput. 30(5), 539–551 (2014). https://doi.org/10.1007/s00371-013-0879-0

    Article  Google Scholar 

  39. Wang, Z., Liu, X., Zhang, J.: Performance evaluation in color-based image retrieval using artificial bee colony algorithm. J. Inf. Comput. Sci. 11(4), 1077–1086 (2014). https://doi.org/10.12733/jics20102885

    Article  Google Scholar 

  40. Xiao, Y., Cao, Y., Yu, W., Tian, J.: Multi-level threshold selection based on artificial bee colony algorithm and maximum entropy for image segmentation. Int. J. Comput. Appl. Technol. 43(4), 343–350 (2012). https://doi.org/10.1504/IJCAT.2012.047159

    Article  Google Scholar 

  41. Yilmaz, B., Ozbay, Y.: Contrast enhancement using linear image combinations algorithm (CEULICA) for enhancing brain magnetic resonance images. Turk. J. Electr. Eng. Comput. Sci. 22(6), 1540–1563 (2014). https://doi.org/10.3906/elk-1209-31

    Article  Google Scholar 

  42. Zhang, Y., Wu, L., Wang, S.: Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagn. Res. 116, 65–79 (2011). https://doi.org/10.2528/PIER11031709

    Article  Google Scholar 

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Aslan.

Ethics declarations

Conflict of interest

The authors declare that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, S. Modified artificial bee colony algorithms for solving multiple circle detection problem. Vis Comput 37, 843–856 (2021). https://doi.org/10.1007/s00371-020-01834-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01834-4

Keywords

Navigation