Skip to main content
Log in

Structure revealing of low-light images using wavelet transform based on fractional-order denoising and multiscale decomposition

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Images captured in low-light environment often lower its quality due to low illumination and high noise. Hence, the low visibility of images notably degrades the overall performance of multimedia and vision systems that are typically designed for high-quality inputs. To resolve this problem, numerous algorithms have been proposed in extant literature to improve the visual quality of low-light images. However, existing approaches are not good at improving overexposed portions and produce unnecessary distortion, which leads to poor visibility in images. Therefore, in this paper, a new model is proposed to prevent overenhancement, handle uneven illumination, and suppress noise in underexposed images. Firstly, the input image is converted into HSV color space. Then, the obtained V component is decomposed into high- and low-frequency subbands using the dual-tree complex wavelet transform. Secondly, a denoised model based on fractional-order anisotropic diffusion is applied on high-pass subbands. Thirdly, multiscale decomposition is used to extract more details from low-pass subbands, and inverse transformation is performed to compute final V. Next, sigmoid function and tone mapping are used on V-channel to prevent data loss and achieve robust results. Finally, the image is reconstructed and converted to RGB color space to achieve enhanced performance. Comparative experimental statistics show that the proposed method achieves high efficacy and outperforms the traditional approaches in terms of overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://sites.google.com/site/vonikakis/datasets.

References

  1. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43, 1–8 (1997)

    Google Scholar 

  2. Der Chen, S., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49, 1310–1319 (2003)

    Google Scholar 

  3. Arici, T., Dikbas, S., Altunbasak, A.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18, 1921–1935 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Wu, X.: A linear programming approach for optimal contrast-tone mapping. IEEE Trans. Image Process. 20, 1262–1272 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Aamir, M., Rahman, Z., Pu, Y.-F., Abro, W.A., Gulzar, K.: Satellite image enhancement using wavelet-domain based on singular value decomposition. Int. J. Adv. Comput. Sci. Appl. (IJACSA) (2019). https://doi.org/10.14569/IJACSA.2019.0100667

    Article  Google Scholar 

  6. Demirel, H., Ozcinar, C., Anbarjafari, G.: Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geosci. Remote Sens. Lett. 7, 333–337 (2010)

    Google Scholar 

  7. Atta, R., Abdel-Kader, R.F.: Brightness preserving based on singular value decomposition for image contrast enhancement. Optik (Stuttg) 126, 799–803 (2015)

    Google Scholar 

  8. Cheng, J., Lv, X., Xie, Z.: A predicted compensation model of human vision system for low-light image. In: Proceedings—2010 3rd International Congress on Image and Signal Processing, CISP 2010 (2010)

  9. Yang, M.X., Tang, G.J., Liu, X.H., Wang, L.Q., Cui, Z.G., Luo, S.H.: Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform. Optoelectron. Lett. 14, 470–475 (2018)

    Google Scholar 

  10. Malm, H., Oskarsson, M., Warrant, E., Clarberg, P., Hasselgren, J., Lejdfors, C.: Adaptive enhancement and noise reduction in very low light-level video. In: Proceedings of the IEEE International Conference on Computer Vision (2007)

  11. Bidwai, P., Tuptewar, D.J.: Resolution and contrast enhancement techniques for grey level, color image and satellite image. In: Proceedings—IEEE International Conference on Information Processing, ICIP 2015 (2016)

  12. Sun, T., Jung, C.: Readability enhancement of low light images based on dual-tree complex wavelet transform. In: Proceedings—IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (2016)

  13. Park, S., Yu, S., Moon, B., Ko, S., Paik, J.: Low-light image enhancement using variational optimization-based retinex model. IEEE Trans. Consum. Electron. 63, 178–184 (2017)

    Google Scholar 

  14. Karumuri, R., Kumari, S.A.: Weighted guided image filtering for image enhancement. In: Proceedings of the 2nd International Conference on Communication and Electronics Systems, ICCES 2017 (2018)

  15. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26, 982–993 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Kim, K., Kim, S., Kim, K.-S.: Effective image enhancement techniques for fog-affected indoor and outdoor images. IET Image Process. 12, 465–471 (2017)

    Google Scholar 

  17. Yin, W., Lin, X., Sun, Y.: A novel framework for low-light colour image enhancement and denoising. In: Proceedings of 2011 3rd International Conference on Awareness Science and Technology, ICAST 2011 (2011)

  18. Łoza, A., Bull, D.R., Hill, P.R., Achim, A.M.: Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients. Digit. Signal Process. A Rev. J. 23, 1856–1866 (2013)

    Google Scholar 

  19. Easley, G.R., Labate, D., Colonna, F.: Shearlet-based total variation diffusion for denoising. IEEE Trans. Image Process. 18, 260–268 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Aamir, M., Pu, Y.F., Rahman, Z., Tahir, M., Naeem, H., Dai, Q.: A framework for automatic building detection from low-contrast satellite images. Symmetry (Basel) 11, 3 (2019)

    Google Scholar 

  21. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6, 965–976 (1997)

    Google Scholar 

  22. Shan, Q., Jia, J., Brown, M.S.: Globally optimized linear windowed tone mapping. IEEE Trans. Vis. Comput. Graph. 16, 663–675 (2010)

    Google Scholar 

  23. Beghdadi, A., Le Negrate, A.: Contrast enhancement technique based on local detection of edges. Comput. Vis. Graph. Image Process. 46, 162–174 (1989)

    Google Scholar 

  24. Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7, 2032–2040 (1990)

    Google Scholar 

  25. Gonzalez, R.C., Woods, R.E., Masters, B.R.: Digital image processing third edition. J. Biomed. Opt. 14(2), 331–333 (2009)

  26. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2007)

    Google Scholar 

  27. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53, 1752–1758 (2007)

    Google Scholar 

  28. Wang, C., Ye, Z.: Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans. Consum. Electron. 51, 1326–1334 (2005)

    Google Scholar 

  29. Dong, X., et al.: Fast efficient algorithm for enhancement of low lighting video. In: Proceedings—IEEE International Conference on Multimedia and Expo (2011)

  30. Celik, T., Tjahjadi, T.: Contextual and variational contrast enhancement. IEEE Trans. Image Process. 20, 3431–3441 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016)

  32. Wang, L., Xiao, L., Liu, H., Wei, Z.: Variational Bayesian method for retinex. IEEE Trans. Image Process. 23, 3381–3396 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22, 3538–3548 (2013)

    Google Scholar 

  34. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)

    Google Scholar 

  35. Ying, Z., Li, G., Gao. W.: A bio-inspired multi-exposure fusion framework for low-light image enhancement. arXiv preprint arXiv:1711.00591 (2017)

  36. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic–extrinsic prior model for retinex. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

  37. Li, C., Guo, J., Porikli, F., Pang, Y.: LightenNet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recognit. Lett. 104, 15–22 (2018)

    Google Scholar 

  38. Guo, Y., Ke, X., Ma, J., Zhang, J.: A pipeline neural network for low-light image enhancement. IEEE Access 7, 13737–13744 (2019)

    Google Scholar 

  39. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: low-light image/video enhancement using CNNs. In: BMVC, p. 220 (2018)

  40. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Google Scholar 

  41. Cattè, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Oldham, K.B., Spanier, J.: Theory and Applications of Differentiation and Integration of Arbitrary Order. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  43. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  44. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)

    Google Scholar 

  45. Chakrabarti, A., Scharstein, D., Zickler, T.: An empirical camera model for internet color vision (2012)

  46. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. J. Opt. Soc. Am. A 31, 1049–1058 (2014)

    Google Scholar 

  47. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24, 3345–3356 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Lynch, S.E., Drew, M.S., Finlayson, G.D.: Colour constancy from both sides of the shadow edge. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

  49. Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31, 1–203 (2012)

    Google Scholar 

  50. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. (2016). https://doi.org/10.1016/j.sigpro.2016.05.031

    Article  Google Scholar 

  51. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2011). https://doi.org/10.1109/CVPR.2011.5995413

  52. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings—2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017 (2018)

  53. Petro, A.B., Sbert, C., Morel, J.-M.: Multiscale retinex. Image Process. Line (2014). https://doi.org/10.5201/ipol.2014.107

    Article  Google Scholar 

  54. Wang, R., Zhang, Q., Fu, C.-W., Shen, X., Zheng, W.-S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)

  55. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640 (2019)

  56. Gu, K., Wang, S., Zhai, G., Ma, S., Yang, X., Lin, W., Zhang, W., Gao, W.: Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure. IEEE Trans. Multimed. 18(3), 432–443 (2016)

    Google Scholar 

  57. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Google Scholar 

  58. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Hautiere, N., Tarel, J.-P., Aubert, D., Dumont, E.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 27(2), 87–95 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Tsai, D.-Y., Lee, Y., Matsuyama, E.: Information entropy measure for evaluation of image quality. J. Digit. Imaging 21(3), 338–347 (2008)

    Google Scholar 

  61. Chen, S.-D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)

    Google Scholar 

  62. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Google Scholar 

  63. Easley, G., Labate, D., Lim, W.-Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(1), 25–46 (2008)

    MathSciNet  MATH  Google Scholar 

  64. Jafari, S., Ghofrani, S.: Using two coefficients modeling of nonsubsampled shearlet transform for despeckling. J. Appl. Remote Sens. 10(1), 015002 (2016)

    Google Scholar 

  65. Qiao, N., Zou, B.: Nonlocal orientation diffusion partial differential equation model for optics image denoising. Optik 124(14), 1889–1891 (2013)

    Google Scholar 

  66. Farhangi, N., Ghofrani, S.: Using bayesshrink, bishrink, weighted bayesshrink, and weighted bishrink in NSST and SWT for despeckling SAR images. EURASIP J. Image Video Process. 2018(1), 4 (2018)

    Google Scholar 

  67. Shanmugavadivu, P., Balasubramanian, K., Muruganandam, A.: Particle swarm optimized bi-histogram equalization for contrast enhancement and brightness preservation of images. Vis. Comput. 30(4), 387–399 (2014)

    Google Scholar 

  68. Huang, H., Xiao, X.: Example-based contrast enhancement by gradient mapping. Vis. Comput. 26(6–8), 731–738 (2010)

    Google Scholar 

  69. Pajak, D., Čadík, M., Aydın, T.O., Okabe, M., Myszkowski, K., Seidel, H.-P.: Contrast prescription for multiscale image editing. Vis. Comput. 26(6–8), 739–748 (2010)

    Google Scholar 

  70. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Joshi, P., Prakash, S.: Image enhancement with naturalness preservation. Vis. Comput. 36, 1–13 (2018)

    Google Scholar 

  72. Yang, C., Feng, H., Xu, Z., Li, Q., Chen, Y.: Correction of overexposure utilizing haze removal model and image fusion technique. Vis. Comput. 35(5), 695–705 (2019)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program Foundation of China under Grants 2018YFC0830300 and the National Natural Science Foundation of China under Grants 61571312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fei Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z., Pu, YF., Aamir, M. et al. Structure revealing of low-light images using wavelet transform based on fractional-order denoising and multiscale decomposition. Vis Comput 37, 865–880 (2021). https://doi.org/10.1007/s00371-020-01838-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01838-0

Keywords

Navigation