Abstract
As one of the most popular preprocessing steps in computer vision fields, superpixel generation algorithm has been extensively studied in recent years. Researchers have to find a way to produce superpixels with both accuracy and computationally efficiency. Inspired by the real-time superpixel segmentation method using density-based spatial clustering of applications with noise (DBSCAN), we propose a two-stage, non-iterative superpixel segmentation approach. In the first stage, we produce the initial regions. To make the superpixels attach to most object boundaries well, we define an adaptive parameter based on the boundary probability map in the distance measurement. At the same time, we adopt the averaging colors of region to represent the cluster center feature. In the second stage, we merge small regions to produce superpixels. To make them have uniform sizes, we take the initial region size into consideration and define a new distance measurement between the two neighboring regions. In the whole framework, we process all the pixels only once. We test the proposed method on the public data sets. The experimental results show that our proposed algorithm outperforms the most compared approaches with accuracy and has competitive speed with the real-time methods (e.g., DBSCAN).













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4895–4904 (2017)
Ban, Z., Liu, J., Cao, L.: Superpixel segmentation using gaussian mixture model. IEEE Trans. Image Process. 27(8), 4105–4117 (2018)
Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Math. Morphol. Image Process. 34, 433–481 (1993)
Chen, J., Li, Z., Huang, B.: Linear spectral clustering superpixel. IEEE Trans. Image Process. 26(7), 3317–3330 (2017)
Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)
Choi, K., Oh, K.: Subsampling-based acceleration of simple linear iterative clustering for superpixel segmentation. Comput. Vis. Image Underst. 146, 1–8 (2016)
Den Bergh, M.V., Boix, X., Roig, G., Van Gool, L.: Seeds: Superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2015)
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)
Dong, X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense matching. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2518–2526 (2017)
Dong, X., Shen, J., Shao, L., Van Gool, L.: sub-markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016)
Dong, X., Shen, J., Shao, L., Yang, M.H.: interactive cosegmentation using global and local energy optimization. IEEE Trans. Image Process. 24(11), 3966–3977 (2015)
Giraud, R., Ta, V., Papadakis, N.: Scalp: Superpixels with contour adherence using linear path. In: International Conference on Pattern Recognition pp. 2374–2379 (2016)
Giraud, R., Ta, V., Papadakis, N.: Robust superpixels using color and contour features along linear path. Comput. Vis. Image Underst. 170, 1–13 (2018)
Hartley, T., Sidorov, K., Willis, C.J., Marshall, A.D.: Gradient weighted superpixels for interpretability in cnns. Computer Vision and Pattern Recognition (2019)
Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel sampling networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 352–368 (2018)
Lee, S.H., Jang, W.D., Kim, C.S.: Contour-constrained superpixels for image and video processing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5863–5871 (2017)
Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)
Li, Z., Wu, X.M., Chang, S.F.: Segmentation using superpixels: A bipartite graph partitioning approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 789–796. IEEE (2012)
Liang, Y., Shen, J., Dong, X., Sun, H., Li, X.: video supervoxels using partially absorbing random walks. IEEE Trans. Circuits Syst. Video Technol. 26(5), 928–938 (2016)
Liang, Z., Shen, J.: local semantic siamese networks for fast tracking. IEEE Trans. Image Process. (2019). https://doi.org/10.1109/TIP.2019.2959256
Liu, B., Hu, H., Wang, H., Wang, K., Liu, X., Yu, W.: Superpixel-based classification with an adaptive number of classes for polarimetric sar images. IEEE Trans. Geosci. Remote Sens. 51(2), 907–924 (2013)
Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 2097–2104. IEEE (2011)
Liu, Y., Yu, M., Li, B., He, Y.: Intrinsic manifold slic: a simple and efficient method for computing content-sensitive superpixels. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 653–666 (2018)
Liu, Y.J., Yu, C.C., Yu, M.J., He, Y.: Manifold slic: A fast method to compute content-sensitive superpixels. In: Computer vision and pattern recognition, pp. 651–659 (2016)
Machairas, V., Decencière, E., Walter, T.: Spatial repulsion between markers improves watershed performance. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 194–202. Springer (2015)
Machairas, V., Faessel, M., Cardenas-Pena, D., Chabardes, T., Walter, T., Decenciere, E.: Waterpixels. IEEE Trans. Image Process. 24, 3707–3716 (2015)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)
Meyer, F.: Un algorithme optimal pour la ligne de partage deseaux. Congrés Reconnaissance Formes. Intell. Artif. 2, 847–857 (1991)
Moore, A.P., Prince, J., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)
Oh, K., Choi, K.: Acceleration of simple linear iterative clustering using early candidate cluster exclusion. J Real-Time Image Proc. 16, 945–956 (2016)
Peng, J., Shen, J., Yao, A., Li, X.: Superpixel optimization using higher order energy. IEEE Trans. Circuits Syst. Video Technol. 26(5), 917–927 (2016)
Qian, X., Li, X., Zhang, C.: weighted superpixel segmentation. Vis. Comput. 35, 985–996 (2019)
Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the 9th IEEE International Conference onComputer Vision, 2003, pp. 10–17. IEEE (2003)
Reyes, A., Rincón, M.E.R., García, M.O.M., Santana, E.R.A., Cadena, F.A.A.: Robust image segmentation based on superpixels and Gauss–Markov measure fields. In: 16th Mexican International Conference on Artificial Intelligence (MICAI), pp. 46–52. IEEE (2017)
Schuurmans, M., Berman, M., Blaschko, M.B.: Efficient semantic image segmentation with superpixel pooling. Computer Vision and Pattern Recognition (2018)
Shen, J., Dong, X., Peng, J., Jin, X., Shao, L., Porikli, F.: submodular function optimization for motion clustering and image segmentation. IEEE Trans. Neural Netw. 30(9), 2637–2649 (2019)
Shen, J., Du, Y., Li, X.: Interactive segmentation using constrained laplacian optimization. IEEE Trans. Circuits Syst. Video Technol. 24(7), 1088–1100 (2014)
Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)
Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., Shao, L.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016)
Shen, J., Peng, J., Dong, X., Shao, L., Porikli, F.: higher order energies for image segmentation. IEEE Trans. Image Process. 26(10), 4911–4922 (2017)
Stutz, D.: Superpixel segmentation: an evaluation. Pattern Recogn. 9358, 555–562 (2015)
Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2018)
Tian, X., Jiao, L., Zheng, X., Zhang, X.: inter-frame constrained coding based on superpixel for tracking. Vis. Comput. 31(5), 701–715 (2015)
Verelst, T., Blaschko, M.B., Berman, M.: Generating superpixels using deep image representations. arXiv: Computer Vision and Pattern Recognition (2019)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)
Wang, C., Chan, S., Zhu, Z.Y., Zhang, L., Shum, H.: superpixel-based color-depth restoration and dynamic environment modeling for kinect-assisted image-based rendering systems. Vis. Comput. 34(1), 67–81 (2018)
Wang, H., Shen, J., Yin, J., Dong, X., Sun, H., Shao, L.: adaptive nonlocal random walks for image superpixel segmentation. IEEE Trans. Circuits Syst. Video Technol. (2019). https://doi.org/10.1109/TCSVT.2019.2896438
Wang, W., Shen, J.: deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2018)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp. 1395–1403 (2015)
Zhang, Y., Li, X., Gao, X., Zhang, C.: A simple algorithm of superpixel segmentation with boundary constraint. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1502–1514 (2017)
Zhou, X., Wang, Y., Zhu, Q., Xiao, C., Lu, X.: SSG: superpixel segmentation and grabcut-based salient object segmentation. The Visual Computer 35(3), 385–398 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the National Natural Science Foundation of China (61802229, 61873145), NSFC Joint Fund with Zhejiang under Key Project (U1609218), Natural Science Foundation of Shandong Province (ZR2018BF007, ZR2017JL029), and Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions.
Rights and permissions
About this article
Cite this article
Zhang, Y., Guo, Q. & Zhang, C. Simple and fast image superpixels generation with color and boundary probability. Vis Comput 37, 1061–1074 (2021). https://doi.org/10.1007/s00371-020-01852-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01852-2