Abstract
Human visual system (HVS) can perceive color under varying illumination conditions, and Retinex theory is precisely aimed to simulate and explain how the HVS perceives reflectance regardless of different illumination conditions. In this paper, we introduce a reflectance and illumination decomposition model for the Retinex problem via total generalized variation regularization and \(H^{1}\) decomposition. The total generalized variation regularization ameliorates the staircasing artifacts that appear in the reflectance component of existing total variation-based models and \(H^{1}\) norm guarantees smoother illumination. We analyze the existence and uniqueness of the proposed model and employ an alternating minimization scheme based on split Bregman iteration. We present numerous numerical experiments on both grayscale and color images to make comparisons with several state-of-the-art methods and demonstrate that our method is comparable both quantitatively and qualitatively.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blake, A.: Boundary conditions for lightness computation in mondrian world. Comput. Vis. Graph. Image Process. 32(3), 314–327 (1985)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Bredies, K., Kunisch, K., Valkonen, T.: Properties of l1-tgv2: the one-dimensional case. J. Math. Anal. Appl. 398(1), 438–454 (2013)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chang, H., Ng, M.K., Wang, W., Zeng, T.: Retinex image enhancement via a learned dictionary. Opt. Eng. 54(1), 013107–013107 (2015)
Cheng, M.H., Huang, T.Z., Zhao, X.L., Ma, T.H., Huang, J.: A variational model with hybrid hyper-Laplacian priors for retinex. Appl. Math. Model. 66, 305–321 (2019)
Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter. In: Proceedings of 2007 IEEE International Symposium on Circuits and Systems, pp. 3948–3951. IEEE (2007)
Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement using single-scale retinex based on an improved image formation model. In: Proceedings of the 16th European Signal Processing Conference, pp. 1–5. IEEE (2008)
Ciurea, F., Funt, B.: Tuning retinex parameters. J. Electron. Imaging 13(1), 48–57 (2004)
Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle–Mccann retinex algorithm. J. Electron. Imaging 13(1), 85–93 (2004)
Duan, J., Pan, Z., Yin, X., Wei, W., Wang, G.: Some fast projection methods based on Chan–Vese model for image segmentation. EURASIP J. Image Video Process. 2014(1), 7–7 (2014)
Duan, J., Pan, Z., Zhang, B., Liu, W., Tai, X.C.: Fast algorithm for color texture image inpainting using the non-local CTV model. J. Global Optim. 62(4), 853–876 (2015)
Frankle, J.A., McCann, J.J.: Method and apparatus for lightness imaging (1983). US Patent 4384336
Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)
Funt, B., Ciurea, F., McCann, J.: Retinex in matlab. In: Proceedings of Color and Imaging Conference, vol. 2000, pp. 112–121. Society for Imaging Science and Technology (2000)
Funt, B.V., Drew, M.S., Brockington, M.: Recovering shading from color images. In: Proceedings of European Conference on Computer Vision, pp. 124–132. Springer (1992)
Gao, Y., Hu, H.M., Li, B., Guo, Q.: Naturalness preserved nonuniform illumination estimation for image enhancement based on retinex. IEEE Trans. Multimed. 20(2), 335–344 (2017)
Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Gu, S., Meng, D., Zuo, W., Zhang, L.: Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1716 (2017)
Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)
Horn, B.K.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)
Hou, G., Wang, G., Pan, Z., Huang, B., Yang, H., Yu, T.: Image enhancement and restoration: state of the art of variational retinex models. IAENG Int. J. Comput. Sci. 44(4), 445–455 (2017)
Jiang, B., Woodell, G.A., Jobson, D.J.: Novel multi-scale retinex with color restoration on graphics processing unit. J. Real-Time Image Proc. 10(2), 239–253 (2015)
Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)
Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)
Juha, K.: Sobolev spaces. Aalto University (2017)
Kang, M., Kang, M., Jung, M.: Total generalized variation based denoising models for ultrasound images. J. Sci. Comput. 72(1), 172–197 (2017)
Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)
Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)
Land, E.H.: Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image, pp. 5163–5169. National Academy of Sciences (1983)
Land, E.H.: Recent advances in retinex theory. In: Central and Peripheral Mechanisms of Colour Vision, pp. 5–17. Springer (1985)
Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision, pp. 3078–3080. National Academy Sciences (1986)
Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)
Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation. In: 2012 IEEE International Conference on Image Processing, pp. 965–968. IEEE (2012)
Lei, L., Zhou, Y., Li, J.: An investigation of retinex algorithms for image enhancement. J. Electron. 24(5), 696–700 (2007)
Li, H., Zhang, L., Shen, H.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)
Liang, J., Zhang, X.: Retinex by higher order total variation \(l^{1}\) decomposition. J. Math. Imaging Vis. 52(3), 345–355 (2015)
Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)
Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)
Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)
Ma, W., Morel, J.M., Osher, S., Chien, A.: An l1-based variational model for retinex theory and its application to medical images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 153–160. IEEE (2011)
Ma, W., Osher, S.: A TV bregman iterative model of retinex theory. Inverse Probl. Imaging 6(4), 697–708 (2012)
Ma, Y., Feng, X., Jiang, X., Xia, Z., Peng, J.: Intrinsic image decomposition: A comprehensive review. In: International Conference on Image and Graphics, pp. 626–638. Springer (2017)
Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18(13), 1005–1014 (2000)
Maz’ya, V.: Sobolev Spaces. Springer, Berlin (2013)
McCann, J.: Lessons learned from mondrians applied to real images and color gamuts. In: Proceedings of Color and Imaging Conference, vol. 1999, pp. 1–8. Society for Imaging Science and Technology (1999)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)
Morel, J.M., Petro, A.B., Sbert, C.: Fast implementation of color constancy algorithms. In: Proceedings of Color Imaging XIV: Displaying, Processing, Hardcopy, and Applications, vol. 7241, pp. 724106–724106. International Society for Optics and Photonics (2009)
Morel, J.M., Petro, A.B., Sbert, C.: A pde formalization of retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010)
Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)
Pallara, L.A.N.F.D., Ambrosio, L., Fusco, N.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)
Park, S., Yu, S., Kim, M., Park, K., Paik, J.: Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access 6, 22084–22093 (2018)
Parthasarathy, S., Sankaran, P.: An automated multi scale retinex with color restoration for image enhancement. In: Proceedings of National Conference on Communications (NCC), pp. 1–5. IEEE (2012)
Provenzi, E., De Carli, L., Alessandro, R., Marini, D.: Mathematical definition and analysis of the retinex algorithm. JOSA A 22(12), 2613–2621 (2005)
Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the retinex algorithm. JOSA A 22(12), 2613–2621 (2005)
Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: a new retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16(1), 162–171 (2006)
Rahman, Z.u., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006. IEEE (1996)
Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–111 (2004)
Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J.: Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488 (2017)
Shi, W., Loy, C.C., Tang, X.: Deep specialized network for illuminant estimation. In: European Conference on Computer Vision, pp. 371–387. Springer (2016)
Shi, Y., Wu, X., Zhu, M.: Low-light image enhancement algorithm based on retinex and generative adversarial network. arXiv preprint arXiv:1906.06027 (2019)
Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation (tgv) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39–51 (2019)
Wang, L., Xiao, L., Liu, H., Wei, Z.: Variational bayesian method for retinex. IEEE Trans. Image Process. 23(8), 3381–3396 (2014)
Wang, Q., Fu, X., Zhang, X.P., Ding, X.: A fusion-based method for single backlit image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4077–4081. IEEE (2016)
Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)
Wang, W., He, C.: A variational model with barrier functionals for retinex. SIAM J. Imaging Sci. 8(3), 1955–1980 (2015)
Wang, W., Li, B., Zheng, J., Xian, S., Wang, J.: A fast multi-scale retinex algorithm for color image enhancement. In: Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, vol. 1, pp. 80–85. IEEE (2008)
Wang, W., Ng, M.K.: A nonlocal total variation model for image decomposition: illumination and reflectance. Numer. Math. Theory Methods Appl. 7(3), 334–355 (2014)
Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)
Zhang, X., Wandell, B.A., et al.: A spatial extension of cielab for digital color image reproduction. In: Proceedings of SID International Symposium Digest of Technical Papers, vol. 27, pp. 731–734. Citeseer (1996)
Zosso, D., Tran, G., Osher, S.: A unifying retinex model based on non-local differential operators. In: Proceedings of Computational Imaging XI, vol. 8657, pp. 865702–865702. International Society for Optics and Photonics (2013)
Acknowledgements
We would like to thank Michael K. Ng [51], Jingwei Liang [38], Xueyang Fu [14] and Chen Wei [70] for sharing their code and the reviewers of this manuscript for their helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (61802279, 61602341) and the National Natural Science Foundation of Tianjin (18JCQNJC00100, 17JCQNJC00600).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
In this appendix, we introduce detailed discretization of first-order and second-order differential operators using finite difference scheme.
The first-order forward and backward difference schemes are first given. Let \(\Omega \rightarrow {\mathbb {R}}^{M\times N}\) denote the two-dimensional grayscale image space with size M and N. The coordinates x and y are oriented along columns and rows, respectively. So the first-order forward differences of u at point (i, j) along x and y directions are, respectively,
The first-order backward differences are, respectively,
And the discrete second-order derivatives \(\partial _{x}^{-}\partial _{x}^{+}u, \partial _{x}^{+}\partial _{x}^{-}u, \partial _{y}^{-}\partial _{y}^{+}u\) and \(\partial _{y}^{+}\partial _{y}^{-}u\) at point (i, j) can be written by the corresponding compositions of the discrete first-order derivative, as follows
Thus, the gradient, symmetrized derivative, divergence and Laplace can be discretized as follows, respectively:
So the \({\mathcal {F}}(G_r)\) and \({\xi }_{r}\) in Eq. (22) can be written as
and
Rights and permissions
About this article
Cite this article
Wang, C., Zhang, H. & Liu, L. Total generalized variation-based Retinex image decomposition. Vis Comput 37, 77–93 (2021). https://doi.org/10.1007/s00371-020-01888-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01888-4