Abstract
With the recent development of stains simulation on warp-weft style fabric materials, high realistic visual effects of real-life stains can be plausibly simulated effectively. However, the previous method relies on the limited single solvent dyeing assumption, while in the real world, the fabric is often contaminated by different stains simultaneously. To tackle the multi-stains simulation problem, we propose a novel duel-stage solvents computational model (DSSM-TLM), which essentially extended the triple-layer model (TLM) (Zheng et al. in IEEE Trans Vis Comput Graph 25(7):2471–2481, 2019. https://doi.org/10.1109/TVCG.2018.2832039) into a more general version. We demonstrated that various effects, such as oil-water stain mixing or alcohol-water stain mixing, can be simulated correctly first ever. Moreover, the simulation process of our algorithm is consistent with the real multi-solvent liquid diffusion process on a real fabric surface.


















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akinci, N., Cornelis, J., Akinci, G., Teschner, M.: Coupling elastic solids with smoothed particle hydrodynamics fluids. J. Vis. Comput. Anim. 24(3–4), 195–203 (2013). https://doi.org/10.1002/cav.1499
Chen, Y., Xia, L., Wong, T., Tong, X., Bao, H., Guo, B., Shum, H.: Visual simulation of weathering by \(\gamma \)-ton tracing. ACM Trans. Graph. 24(3), 1127–1133 (2005). https://doi.org/10.1145/1073204.1073321
Chu, N.S., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. (TOG) 24(3), 504–11 (2005). https://doi.org/10.1145/1187112.1187186
Chwastiak, S.: A wicking method for measuring wetting properties of carbon yarns. J. Colloid Interface Sci. 42, 298–309 (1973). https://doi.org/10.1016/0021-9797(73)90293-2
Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.: Computer-generated watercolor. In: SIGGRAPH, pp. 421–430 (1997). https://doi.org/10.1145/258734.258896
Daubert, K., Lensch, H.P.A., Heidrich, W., Seidel, H.: Efficient cloth modeling and rendering. In: S.J. Gortler, K. Myszkowski (eds.) Proceedings of the 12th Eurographics Workshop on Rendering Techniques, London, UK, June 25–27, 2001, Eurographics, pp. 63–70. Springer, New York (2001). https://doi.org/10.1007/978-3-7091-6242-2_6
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. Comput. Phys. 183(1), 83–C116 (2002)
Fei, Y.R., Batty, C., Grinspun, E., Zheng, C.: A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37(4), 51:1–51:16 (2018). https://doi.org/10.1145/3197517.3201392
Ghahremani, H., Moradi, A., Abedini-Torghabeh, J., Hassani, S.: Measuring surface tension of binary mixtures of water + alcohols from the diffraction pattern of surface ripples. Der Chemica Sinica 2(6), 212–221 (2011)
Gröller, M.E., Rau, R.T., Straßer, W.: Modeling and visualization of knitwear. IEEE Trans. Vis. Comput. Graph. 1(4), 302–310 (1995). https://doi.org/10.1109/2945.485617
Gu, J., Tu, C., Ramamoorthi, R., Belhumeur, P.N., Matusik, W., Nayar, S.K.: Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25(3), 762–771 (2006). https://doi.org/10.1145/1141911.1141952
Hansen, C.: Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, Boca Raton (2012). https://doi.org/10.1201/9781420006834
Hansen, C.M.: The three dimensional solubility parameter and solvent diffusion coefficient: Their importance in surface coating formulation (1967)
Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundary. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
Hollies, N.R.S., Kaessinger, M.M., Watson, B.S., Bogaty, H.: Water transport mechanism in textile materials part ii: capillary-type penetration in yarns and fabrics. Text. Res. J. 27(1), 8–13 (1957)
Hsieh, Y.L.: Liquid transport in fabric structures. Text. Res. J. 65(5), 299–307 (1995)
Jensen, H.W., Legakis, J., Dorsey, J.: Rendering of wet materials. In: D. Lischinski, G.W. Larson (eds.) Rendering Techniques ’99, Proceedings of the Eurographics Workshop in Granada, Spain, June 21–23, 1999, Eurographics, pp. 273–282. Springer, New York (1999). https://doi.org/10.1007/978-3-7091-6809-7_24
Kaldor, J.M., James, D.L., Marschner, S.: Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27(3), 65 (2008). https://doi.org/10.1145/1360612.1360664
Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29(4), 105:1–105:10 (2010). https://doi.org/10.1145/1778765.1778842
Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 49 (2008). https://doi.org/10.1145/1360612.1360648
Li, X., He, X., Liu, X., Zhang, J.J., Liu, B., Wu, E.: Multiphase interface tracking with fast semi-Lagrangian contouring. IEEE Trans. Vis. Comput. Graph. 22(8), 1973–1986 (2016). https://doi.org/10.1109/TVCG.2015.2476788
Lu, J., Georghiades, A.S., Glaser, A., Wu, H., Wei, L., Guo, B., Dorsey, J., Rushmeier, H.E.: Context-aware textures. ACM Trans. Graph. 26(1), 3 (2007). https://doi.org/10.1145/1189762.1189765
Lu, J., Georghiades, A.S., Rushmeier, H.E., Dorsey, J., Xu, C.: Synthesis of material drying history: phenomenon modeling, transferring and rendering. In: P. Poulin, E. Galin (eds.) Proceedings of the Eurographics Workshop on Natural Phenomena, NPH 2005, Dublin, Ireland, 2005, pp. 7–16. Eurographics Association (2005). https://doi.org/10.2312/NPH/NPH05/007-016
Lukas, D., Glazyrina, E., Pan, N.: Computer simulation of liquid wetting dynamics in fiber structures using the ising model. J. Text. Inst. 88(2), 149–161 (1997). https://doi.org/10.1080/00405009708658539
Mhetre, S.K.: Effect of fabric structure on liquid transport, ink jet drop spreading and printing quality. Ph.D. thesis, Georgia Institute of Technology (2009)
Morimoto, Y., Tanaka, M., Tsuruno, R., Tomimatsu, K.: Visualization of dyeing based on diffusion and adsorption theories. In: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, PG ’07, pp. 57–64. IEEE Computer Society, Washington, DC, USA (2007)
Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005). https://doi.org/10.1145/1073368.1073402
Perlin, K.: An image synthesizer. ACM Comput. Graph. 19(3), 287–296 (1985). https://doi.org/10.1145/325334.325247
Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A.E., Whitaker, R.T.: Particle-based simulation of fluids. Comput. Graph. Forum 22(3), 401–410 (2003). https://doi.org/10.1111/1467-8659.00687
Ren, B., Li, C., Yan, X., Lin, M.C., Bonet, J., Hu, S.: Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. 33(5), 171:1–171:11 (2014). https://doi.org/10.1145/2645703
Sears, F.W., Zemanski, M.W.: University Physics, 2nd edn. Addison Wesley, Boston (1955)
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001). https://doi.org/10.1006/jcph.2001.6726
Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)
Weigang, Q.: On-line yarn evenness detection using CCD image sensor. In: 2011 Chinese Control and Decision Conference (CCDC), pp. 1787–1790. IEEE (2011)
Wiener, J., Dejlová, P.: Wicking and wetting in textiles. AUTEX Res. J. 3(2), 64–71 (2003)
Xu, Y., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., Shum, H.: Photorealistic rendering of knitwear using the lumislice. In: L. Pocock (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12–17, 2001, pp. 391–398. ACM (2001). https://doi.org/10.1145/383259.383303
Zhao, S., Jakob, W., Marschner, S., Bala, K.: Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31(4), 75:1–75:10 (2012). https://doi.org/10.1145/2185520.2185571
Zheng, Y., Chen, Y., Fei, G., Dorsey, J., Wu, E.: Simulation of textile stains. IEEE Trans. Vis. Comput. Graph. 25(7), 2471–2481 (2019). https://doi.org/10.1109/TVCG.2018.2832039
Zhu, C., Takatera, M.: Effect of fabric structure and yarn on capillary liquid flow within fabrics. J. Fiber Bioeng. Inform. 6(2), 205–215 (2013). https://doi.org/10.3993/jfbi06201309
Acknowledgements
This study is supported by National Key R&D Program of China (2017YFB1002701, 2020AAA0130400), NSFC (61672502, 61632003), the UM Research Fund (MYRG2019-00006-FST), and PKU-Baidu Fund (2019BD001).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflicts of interest
We declare that we have no conflict of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zheng, Y., Ma, L., Chen, Y. et al. Simulation of multi-solvent stains on textile. Vis Comput 36, 2005–2016 (2020). https://doi.org/10.1007/s00371-020-01906-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01906-5