Skip to main content
Log in

Simulation of multi-solvent stains on textile

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the recent development of stains simulation on warp-weft style fabric materials, high realistic visual effects of real-life stains can be plausibly simulated effectively. However, the previous method relies on the limited single solvent dyeing assumption, while in the real world, the fabric is often contaminated by different stains simultaneously. To tackle the multi-stains simulation problem, we propose a novel duel-stage solvents computational model  (DSSM-TLM), which essentially extended the triple-layer model (TLM) (Zheng et al. in IEEE Trans Vis Comput Graph 25(7):2471–2481, 2019. https://doi.org/10.1109/TVCG.2018.2832039) into a more general version. We demonstrated that various effects, such as oil-water stain mixing or alcohol-water stain mixing, can be simulated correctly first ever. Moreover, the simulation process of our algorithm is consistent with the real multi-solvent liquid diffusion process on a real fabric surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Akinci, N., Cornelis, J., Akinci, G., Teschner, M.: Coupling elastic solids with smoothed particle hydrodynamics fluids. J. Vis. Comput. Anim. 24(3–4), 195–203 (2013). https://doi.org/10.1002/cav.1499

    Article  Google Scholar 

  2. Chen, Y., Xia, L., Wong, T., Tong, X., Bao, H., Guo, B., Shum, H.: Visual simulation of weathering by \(\gamma \)-ton tracing. ACM Trans. Graph. 24(3), 1127–1133 (2005). https://doi.org/10.1145/1073204.1073321

    Article  Google Scholar 

  3. Chu, N.S., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. (TOG) 24(3), 504–11 (2005). https://doi.org/10.1145/1187112.1187186

    Article  Google Scholar 

  4. Chwastiak, S.: A wicking method for measuring wetting properties of carbon yarns. J. Colloid Interface Sci. 42, 298–309 (1973). https://doi.org/10.1016/0021-9797(73)90293-2

    Article  Google Scholar 

  5. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.: Computer-generated watercolor. In: SIGGRAPH, pp. 421–430 (1997). https://doi.org/10.1145/258734.258896

  6. Daubert, K., Lensch, H.P.A., Heidrich, W., Seidel, H.: Efficient cloth modeling and rendering. In: S.J. Gortler, K. Myszkowski (eds.) Proceedings of the 12th Eurographics Workshop on Rendering Techniques, London, UK, June 25–27, 2001, Eurographics, pp. 63–70. Springer, New York (2001). https://doi.org/10.1007/978-3-7091-6242-2_6

  7. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827

    Article  Google Scholar 

  8. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. Comput. Phys. 183(1), 83–C116 (2002)

    Article  MathSciNet  Google Scholar 

  9. Fei, Y.R., Batty, C., Grinspun, E., Zheng, C.: A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37(4), 51:1–51:16 (2018). https://doi.org/10.1145/3197517.3201392

    Article  Google Scholar 

  10. Ghahremani, H., Moradi, A., Abedini-Torghabeh, J., Hassani, S.: Measuring surface tension of binary mixtures of water + alcohols from the diffraction pattern of surface ripples. Der Chemica Sinica 2(6), 212–221 (2011)

    Google Scholar 

  11. Gröller, M.E., Rau, R.T., Straßer, W.: Modeling and visualization of knitwear. IEEE Trans. Vis. Comput. Graph. 1(4), 302–310 (1995). https://doi.org/10.1109/2945.485617

    Article  Google Scholar 

  12. Gu, J., Tu, C., Ramamoorthi, R., Belhumeur, P.N., Matusik, W., Nayar, S.K.: Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25(3), 762–771 (2006). https://doi.org/10.1145/1141911.1141952

    Article  Google Scholar 

  13. Hansen, C.: Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, Boca Raton (2012). https://doi.org/10.1201/9781420006834

    Book  Google Scholar 

  14. Hansen, C.M.: The three dimensional solubility parameter and solvent diffusion coefficient: Their importance in surface coating formulation (1967)

  15. Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundary. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  16. Hollies, N.R.S., Kaessinger, M.M., Watson, B.S., Bogaty, H.: Water transport mechanism in textile materials part ii: capillary-type penetration in yarns and fabrics. Text. Res. J. 27(1), 8–13 (1957)

    Article  Google Scholar 

  17. Hsieh, Y.L.: Liquid transport in fabric structures. Text. Res. J. 65(5), 299–307 (1995)

    Article  Google Scholar 

  18. Jensen, H.W., Legakis, J., Dorsey, J.: Rendering of wet materials. In: D. Lischinski, G.W. Larson (eds.) Rendering Techniques ’99, Proceedings of the Eurographics Workshop in Granada, Spain, June 21–23, 1999, Eurographics, pp. 273–282. Springer, New York (1999). https://doi.org/10.1007/978-3-7091-6809-7_24

  19. Kaldor, J.M., James, D.L., Marschner, S.: Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27(3), 65 (2008). https://doi.org/10.1145/1360612.1360664

    Article  Google Scholar 

  20. Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29(4), 105:1–105:10 (2010). https://doi.org/10.1145/1778765.1778842

    Article  Google Scholar 

  21. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 49 (2008). https://doi.org/10.1145/1360612.1360648

    Article  Google Scholar 

  22. Li, X., He, X., Liu, X., Zhang, J.J., Liu, B., Wu, E.: Multiphase interface tracking with fast semi-Lagrangian contouring. IEEE Trans. Vis. Comput. Graph. 22(8), 1973–1986 (2016). https://doi.org/10.1109/TVCG.2015.2476788

    Article  Google Scholar 

  23. Lu, J., Georghiades, A.S., Glaser, A., Wu, H., Wei, L., Guo, B., Dorsey, J., Rushmeier, H.E.: Context-aware textures. ACM Trans. Graph. 26(1), 3 (2007). https://doi.org/10.1145/1189762.1189765

    Article  Google Scholar 

  24. Lu, J., Georghiades, A.S., Rushmeier, H.E., Dorsey, J., Xu, C.: Synthesis of material drying history: phenomenon modeling, transferring and rendering. In: P. Poulin, E. Galin (eds.) Proceedings of the Eurographics Workshop on Natural Phenomena, NPH 2005, Dublin, Ireland, 2005, pp. 7–16. Eurographics Association (2005). https://doi.org/10.2312/NPH/NPH05/007-016

  25. Lukas, D., Glazyrina, E., Pan, N.: Computer simulation of liquid wetting dynamics in fiber structures using the ising model. J. Text. Inst. 88(2), 149–161 (1997). https://doi.org/10.1080/00405009708658539

    Article  Google Scholar 

  26. Mhetre, S.K.: Effect of fabric structure on liquid transport, ink jet drop spreading and printing quality. Ph.D. thesis, Georgia Institute of Technology (2009)

  27. Morimoto, Y., Tanaka, M., Tsuruno, R., Tomimatsu, K.: Visualization of dyeing based on diffusion and adsorption theories. In: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, PG ’07, pp. 57–64. IEEE Computer Society, Washington, DC, USA (2007)

  28. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005). https://doi.org/10.1145/1073368.1073402

  29. Perlin, K.: An image synthesizer. ACM Comput. Graph. 19(3), 287–296 (1985). https://doi.org/10.1145/325334.325247

    Article  Google Scholar 

  30. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A.E., Whitaker, R.T.: Particle-based simulation of fluids. Comput. Graph. Forum 22(3), 401–410 (2003). https://doi.org/10.1111/1467-8659.00687

    Article  Google Scholar 

  31. Ren, B., Li, C., Yan, X., Lin, M.C., Bonet, J., Hu, S.: Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. 33(5), 171:1–171:11 (2014). https://doi.org/10.1145/2645703

    Article  MATH  Google Scholar 

  32. Sears, F.W., Zemanski, M.W.: University Physics, 2nd edn. Addison Wesley, Boston (1955)

    Google Scholar 

  33. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001). https://doi.org/10.1006/jcph.2001.6726

    Article  MathSciNet  MATH  Google Scholar 

  34. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)

    Article  Google Scholar 

  35. Weigang, Q.: On-line yarn evenness detection using CCD image sensor. In: 2011 Chinese Control and Decision Conference (CCDC), pp. 1787–1790. IEEE (2011)

  36. Wiener, J., Dejlová, P.: Wicking and wetting in textiles. AUTEX Res. J. 3(2), 64–71 (2003)

    Google Scholar 

  37. Xu, Y., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., Shum, H.: Photorealistic rendering of knitwear using the lumislice. In: L. Pocock (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12–17, 2001, pp. 391–398. ACM (2001). https://doi.org/10.1145/383259.383303

  38. Zhao, S., Jakob, W., Marschner, S., Bala, K.: Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31(4), 75:1–75:10 (2012). https://doi.org/10.1145/2185520.2185571

    Article  Google Scholar 

  39. Zheng, Y., Chen, Y., Fei, G., Dorsey, J., Wu, E.: Simulation of textile stains. IEEE Trans. Vis. Comput. Graph. 25(7), 2471–2481 (2019). https://doi.org/10.1109/TVCG.2018.2832039

    Article  Google Scholar 

  40. Zhu, C., Takatera, M.: Effect of fabric structure and yarn on capillary liquid flow within fabrics. J. Fiber Bioeng. Inform. 6(2), 205–215 (2013). https://doi.org/10.3993/jfbi06201309

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Key R&D Program of China (2017YFB1002701, 2020AAA0130400), NSFC (61672502, 61632003), the UM Research Fund (MYRG2019-00006-FST), and PKU-Baidu Fund (2019BD001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Ma or Enhua Wu.

Ethics declarations

Conflicts of interest

We declare that we have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Ma, L., Chen, Y. et al. Simulation of multi-solvent stains on textile. Vis Comput 36, 2005–2016 (2020). https://doi.org/10.1007/s00371-020-01906-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01906-5

Keywords

Navigation