Abstract
Segmentation of 3D point clouds is still an open issue in the case of unbalanced and in-homogeneous data-sets. In the application context of the modeling of botanical trees, a fundamental challenge consists in separating the leaves from the wood. Based on deep learning and a class decision process, we propose an innovative method designed to separate leaf points from wood points in terrestrial LiDAR point clouds of trees. Although simple, our approach learns trees characteristic point patterns efficiently and robustly. To train our 3D deep learning model, we constructed a 3D labeled point cloud data-set of different tree species. Experiments show that our 3D deep representation together with our geometric approach leads to significant improvement over the state-of-the-art methods in segmentation task.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)
Béland, M., Baldocchi, D.D., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric. For. Meteorol. 184, 82–97 (2014)
Bennett, N.D., Croke, B.F.W., Guariso, G., et al.: Characterising performance of environmental models. Environ. Model. Softw. 40, 1–20 (2013)
Bhanu, B., Lee, S., Ho, C.C., Henderson, T.: Range data processing: representation of surfaces by edges. In: Proceedings of the Eighth International Conference on Pattern Recognition, pp. 236–238. IEEE CS Press (1986)
Biasotti, S., Lavoué, G., Falcidieno, B., Pratikakis, I.: Generalizing discrete convolutions for unstructured point clouds
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Briechle, S., Krzystek, P., Vosselman, G.: Semantic labeling of als point clouds for tree species mapping using the deep neural network pointnet++. Remote Sensing & Spatial Information Sciences, International Archives of the Photogrammetry (2019)
Burt, A., Disney, M., Calders, K.: Extracting individual trees from Lidar point clouds using treeseg. Methods Ecol. Evol. 10(3), 438–445 (2019)
Chen, J., Chen, B.: Architectural modeling from sparsely scanned range data. Int. J. Comput. Vis. 78(2–3), 223–236 (2008)
Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, Boca Raton (2008)
Côté, J.F., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial LiDAR. Remote Sens. Environ. 1067–1081 (2009)
Dassot, M., Constant, T., Fournier, M.: The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann. For. Sci. 959–974 (2011)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, pp. 226–231. AAAI Press (1996)
Ferrara, R., Virdis, S.G., Ventura, A., Ghisu, T., Duce, P., Pellizzaro, G.: An automated approach for wood-leaf separation from terrestrial LiDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 262, 434–444 (2018)
Filin, S.: Surface clustering from airborne laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34(3/A), 119–124 (2002)
Filin, S., Pfeifer, N.: Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS J. Photogramm. Remote Sens. 60(2), 71–80 (2006)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Golovinskiy, A., Funkhouser, T.: Min-cut based segmentation of point clouds. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 39–46. IEEE (2009)
Golovinskiy, A., Kim, V.G., Funkhouser, T.: Shape-based recognition of 3D point clouds in urban environments. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2154–2161. IEEE (2009)
Hackenberg, J., Spiecker, H., Calders, K., Disney, M., Raumonen, P.: Simpletree—an efficient open source tool to build tree models from TLS clouds. Forests 6(11), 4245–4294 (2015)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9, 1263–1284 (2008)
Heinzel, J., Huber, M.O.: Constrained spectral clustering of individual trees in dense forest using terrestrial laser scanning data. Remote Sens. 10(7), 1056 (2018)
Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of surface normal estimation methods for range sensing applications. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3206–3211. IEEE (2009)
Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 (2017)
Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12,697–12,705 (2019)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J.: LiDAR remote sensing for ecosystem studies. Bioscience 52(1), 19–30 (2002)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–451 (1975)
Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)
Momo Takoudjou, S., Ploton, P., Sonké, B., et al.: Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: a comparison with traditional destructive approach. Methods Ecol. Evol. 9(4), 905–916 (2018)
Morel, J., Bac, A., Vega, C.: Surface reconstruction of incomplete datasets: a novel Poisson surface approach based on CSRBF. Comput. Graph. 74, 44–55 (2018)
Nguyen, A., Le, B.: 3D point cloud segmentation: a survey. In: Proc. 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 225–230. IEEE (2013)
Niemeyer, J., Rottensteiner, F., Soergel, U.: Classification of urban LiDAR data using conditional random field and random forests. In: Joint Urban Remote Sensing Event 2013, pp. 139–142. IEEE (2013)
Ning, X., Zhang, X., Wang, Y., Jaeger, M.: Segmentation of architecture shape information from 3D point cloud. In: Proceedings of the 8th International Conference on Virtual Reality Continuum and its Applications in Industry, pp. 127–132. ACM (2009)
Olagoke, A., Proisy, C., Féret, J.B., Blanchard, E., Fromard, F., Mehlig, U., de Menezes, M.M., dos Santos, V.F., Berger, U.: Extended biomass allometric equations for large mangrove trees from terrestrial LiDAR data. Trees 30(3), 935–947 (2015)
Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on Visualization’02, pp. 163–170. IEEE Computer Society (2002)
Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pfennigbauer, M., Ullrich, A.: Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement. In: Laser Radar Technology and Applications XV, Vol. 7684, p. 76841F. International Society for Optics and Photonics (2010)
Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory to implementation. Morgan Kaufmann, Burlington (2016)
Pu, S., Vosselman, G., et al.: Automatic extraction of building features from terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36(5), 25–27 (2006)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from rgb-d data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., Lewis, P.: Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520 (2013)
Ravaglia, J., Bac, A., Fournier, R.: Tree stem reconstruction from terrestrial laser scanner point cloud using Hough transform and open active contours. In: Silvilaser 2015 (2015)
Ravaglia, J., Bac, A., Fournier, R.A.: Extraction of tubular shapes from dense point clouds and application to tree reconstruction from laser scanned data. Comput. Graph. 66, 23–33 (2017)
Ravanbakhsh, S., Schneider, J., Poczos, B.: Deep learning with sets and point clouds. arXiv preprint arXiv:1611.04500 (2016)
Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)
Rusu, R.B.: Semantic 3D object maps for everyday manipulation in human living environments. Ph.D. thesis, Computer Science department, Technische Universitaet Muenchen, Germany (2009)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)
Rusu, R.B., Holzbach, A., Blodow, N., Beetz, M.: Fast geometric point labeling using conditional random fields. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7–12. IEEE (2009)
Sappa, A.D., Devy, M.: Fast range image segmentation by an edge detection strategy. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 292–299. IEEE (2001)
Shao, J., Zhang, W., Mellado, N., Wang, N., Jin, S., Cai, S., Luo, L., Lejemble, T., Yan, G.: Slam-aided forest plot mapping combining terrestrial and mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 163, 214–230 (2020)
Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection from point cloud. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)
Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
Tao, S., Guo, Q., Xu, S., Su, Y., Li, Y., Wu, F.: A geometric method for wood-leaf separation using terrestrial and simulated LiDAR data. Photogramm. Eng. Remote Sens. 81(10), 767–776 (2015)
Tao, S., Wu, F., Guo, Q., Wang, Y., Li, W., Xue, B., Hu, X., Li, P., Tian, D., Li, C., et al.: Segmenting tree crowns from terrestrial and mobile Lidar data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 110, 66–76 (2015)
Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–66 (2018)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. arXiv preprint arXiv:1801.07829 (2018)
Wen, Z., Shi, J., Li, Q., He, B., Chen, J.: ThunderSVM: a fast SVM library on GPUs and CPUs. J. Mach. Learn. Res. 19, 1–5 (2018)
Wijmans, E.: Pointnet++ pytorch (2018). https://github.com/erikwijmans/Pointnet2_PyTorch
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Wybren van Keulen: The Grove. F12, The Biotope, Haren, The Netherlands (2011). https://www.thegrove3d.com
Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: deep learning on point sets with parameterized convolutional filters. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)
Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M., Viitala, R.: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J. Photogramm. Remote Sens. 66(1), 28–37 (2011)
Zhang, J., Lin, X., Ning, X.: Svm-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sens. 5(8), 3749–3775 (2013)
Zhang, W., Wan, P., Wang, T., Cai, S., Chen, Y., Jin, X., Yan, G.: A novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens. 11(2), 211 (2019)
Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Acknowledgements
The study was supported by Grant JSPS KAKENHI, Grant Number JP19K11990, from the Japan Society for the Promotion of Science (JSPS) funds. Jules Morel was supported by Grant P18796 from from the Japan Society for the Promotion of Science (JSPS). The authors would like to thank Nicolas Barbier at UMR AMAP (Botanique et Modélisation de l’architecture des plantes et des végétations, France) and S. Momo Takoudjou (IRD-AMAP, ENS-UY1) for providing test data. Those data from Cameroon were collected in collaboration with Alpicam company within the IRD project PPR FTH-AC Changement globaux, biodiversité et santé en zone forestière d’Afrique centrale.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
To our knowledge, there are no issues that would lead to a conflict of interest or disclosure.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Morel, J., Bac, A. & Kanai, T. Segmentation of unbalanced and in-homogeneous point clouds and its application to 3D scanned trees. Vis Comput 36, 2419–2431 (2020). https://doi.org/10.1007/s00371-020-01966-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01966-7