Abstract
People of all ages enjoy solving geometric puzzles. However, finding suitable puzzles, e.g., puzzles with a moderate level of difficulty or puzzles with intellectually stimulating shapes can be difficult. In addition, designing innovative and appealing puzzles requires demanding effort and, typically, involves many trial and error processes. In this paper, we introduce a computational approach for designing geometric puzzles. Existing approaches employ bottom-up, constructive algorithms to generate puzzle pieces; therefore, intervening in the piece generation procedure is difficult. Differing from existing approaches that generate puzzles automatically or semi-automatically, we propose a top-down, partitioning-based approach, that enables us to control and edit piece shapes. With a subtle modification, the proposed algorithm can be easily extended to both 3D polycube and 2D polyomino puzzle design. To generate a variety of piece shapes, the proposed approach involves a capacity-constrained graph partitioning algorithm combined with polyomino tiling. We demonstrate the versatility of the proposed approach through various example designs, including fabricated puzzles, created using the proposed method.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Araújo, C., Cabiddu, D., Attene, M., Livesu, M., Vining, N., Sheffer, A.: Surface2volume: surface segmentation conforming assemblable volumetric partition. ACM Trans. Gr. (2019). https://doi.org/10.1145/3306346.3323004
Attene, M.: Shapes in a box: disassembling 3d objects for efficient packing and fabrication. Comput. Gr. Forum 34(8), 64–76 (2015). https://doi.org/10.1111/cgf.12608
Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of lloyd’s method. ACM Trans. Gr. 28(3), 86:1–86:8 (2009). https://doi.org/10.1145/1531326.1531392
Chen, X., Li, H., Fu, C.W., Zhang, H., Cohen-Or, D., Chen, B.: 3d fabrication with universal building blocks and pyramidal shells. ACM Trans. Gr. (2018). https://doi.org/10.1145/3272127.3275033
Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D., Chen, B.: Dapper: decompose-and-pack for 3d printing. ACM Trans. Gr. 34(6), 213:1–213:12 (2015). https://doi.org/10.1145/2816795.2818087
Coffin, S.: Geometric Puzzle Design, vol. 1. CRC Press, Boca Raton (2006)
Duncan, N., Yu, L.F., Yeung, S.K., Terzopoulos, D.: Approximate dissections. ACM Trans. Gr. 36(6), 182:1–182:13 (2017). https://doi.org/10.1145/3130800.3130831
Ephtracy: Magicavoxel. https://ephtracy.github.io/
Fu, C.W., Song, P., Yan, X., Yang, L.W., Jayaraman, P.K., Cohen-Or, D.: Computational interlocking furniture assembly. ACM Trans. Gr. (2015). https://doi.org/10.1145/2766892
Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems, and Packings Revised and Expanded Second Edition, 2nd edn. Princeton University Press, New York (1994)
Gurobi: Gurobi optimization (2018). http://www.gurobi.com/
Hu, R., Li, H., Zhang, H., Cohen-Or, D.: Approximate pyramidal shape decomposition. ACM Trans. Gr. 33(6), 213:1–213:12 (2014). https://doi.org/10.1145/2661229.2661244
Knuth, D.: Dancing links. Millenial Perspect. Comput. Sci. 159–187 (2000)
Kita, N., Saito, T.: Computational design of generalized centrifugal puzzles. Comput. Graph. 90, 21–28 (2020). https://doi.org/10.1016/j.cag.2020.05.005
Lau, C., Schwartzburg, Y., Shaji, A., Sadeghipoor, Z., Süsstrunk, S.: Creating personalized jigsaw puzzles. In: Proceedings of the Workshop on Non-photorealistic Animation and Rendering, NPAR’14, pp. 31–39. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2630397.2630405
Li, S., Mahdavi-Amiri, A., Hu, R., Liu, H., Zou, C., Van Kaick, O., Liu, X., Huang, H., Zhang, H.: Construction and fabrication of reversible shape transforms. ACM Trans. Gr. (2018). https://doi.org/10.1145/3272127.3275061
Lo, K.Y., Fu, C.W., Li, H.: 3d polyomino puzzle. ACM Trans. Gr. 28(5), 157:1–157:8 (2009). https://doi.org/10.1145/1618452.1618503
Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W.: Chopper: partitioning models into 3d-printable parts. ACM Trans. Gr. (2012). https://doi.org/10.1145/2366145.2366148
Peng, C.H., Yang, Y.L., Wonka, P.: Computing layouts with deformable templates. ACM Trans. Gr. 33(4), 991–9911 (2014). https://doi.org/10.1145/2601097.2601164
Song, P., Deng, B., Wang, Z., Dong, Z., Li, W., Fu, C.W., Liu, L.: Cofifab: coarse-to-fine fabrication of large 3d objects. ACM Trans. Gr. (2016). https://doi.org/10.1145/2897824.2925876
Song, P., Fu, C.W., Cohen-Or, D.: Recursive interlocking puzzles. ACM Trans. Gr. 31(6), 128:1–128:10 (2012). https://doi.org/10.1145/2366145.2366147
Song, P., Fu, C.W., Jin, Y., Xu, H., Liu, L., Heng, P.A., Cohen-Or, D.: Reconfigurable interlocking furniture. ACM Trans. Gr. (2017). https://doi.org/10.1145/3130800.3130803
Song, P., Fu, Z., Liu, L., Fu, C.W.: Printing 3d objects with interlocking parts. Comput. Aided Geom. Des. 35(C), 137–148 (2015). https://doi.org/10.1016/j.cagd.2015.03.020
Sun, T., Zheng, C.: Computational design of twisty joints and puzzles. ACM Trans. Gr. 34(4), 101:1–101:11 (2015). https://doi.org/10.1145/2766961
Tang, K., Song, P., Wang, X., Deng, B., Fu, C.W., Liu, L.: Computational design of steady 3d dissection puzzles. Comput. Gr. Forum 38(2), 291–303 (2019). https://doi.org/10.1111/cgf.13638
van de Kerkhof, M., de Jong, T., Parment, R., Löffler, M., Vaxman, A., van Kreveld, M.: Design and automated generation of Japanese picture puzzles. Comput. Gr. Forum 38(2), 343–353 (2019). https://doi.org/10.1111/cgf.13642
Vanek, J., Galicia, J.A.G., Benes, B., Měch, R., Carr, N., Stava, O., Miller, G.S.: Packmerger: a 3d print volume optimizer. Comput. Gr. Forum 33(6), 322–332 (2014). https://doi.org/10.1111/cgf.12353
Xin, S., Lai, C.F., Fu, C.W., Wong, T.T., He, Y., Cohen-Or, D.: Making burr puzzles from 3d models. ACM Trans. Gr. 30(4), 97:1–97:8 (2011). https://doi.org/10.1145/2010324.1964992
Yao, J., Kaufman, D.M., Gingold, Y., Agrawala, M.: Interactive design and stability analysis of decorative joinery for furniture. ACM Trans. Gr. (2017). https://doi.org/10.1145/3072959.3054740
Yu, M., Ye, Z., Liu, Y.J., He, Y., Wang, C.C.L.: Lineup: computing chain-based physical transformation. ACM Trans. Gr. (2019). https://doi.org/10.1145/3269979
Yuan, Y., Zheng, C., Coros, S.: Computational design of transformables. Comput. Gr. Forum 37(8), 103–113 (2018). https://doi.org/10.1111/cgf.13516
Zhou, Y., Sueda, S., Matusik, W., Shamir, A.: Boxelization: folding 3d objects into boxes. ACM Trans. Gr. 33(4), 71:1–71:8 (2014). https://doi.org/10.1145/2601097.2601173
Zhou, Y., Wang, R.: An algorithm for creating geometric dissection puzzles. In: R. Bosch, D. McKenna, R. Sarhangi (eds.) Proceedings of bridges 2012: Mathematics, Music, Art, Architecture, Culture, pp. 49–56. Tessellations Publishing, Phoenix, Arizona, USA (2012)
Acknowledgements
We thank all the anonymous reviewers for their helpful comments and feedback. This work was supported by JSPS KAKENHI Grant Nos. 19K24338 and 20K19944.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kita, N., Miyata, K. Computational design of polyomino puzzles. Vis Comput 37, 777–787 (2021). https://doi.org/10.1007/s00371-020-01968-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01968-5