Abstract
The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig4_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig7_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-020-02000-6/MediaObjects/371_2020_2000_Fig8_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ballester-Ripoll, R., Pajarola, R.: Lossy volume compression using tucker truncation and thresholding. Vis. Comput. 32(11), 1433–1446 (2016)
Cheggoju, N., Satpute, V.R.: Inpac: independent pass coding algorithm for robust image data transmission through low SNR channels. Vis. Comput. 34(4), 563–573 (2018)
Christopoulos, C., Skodras, A., Ebrahimi, T.: The jpeg2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)
CRISP: principles of remote sensing—centre for remote imaging, sensing and processing, crisp. https://crisp.nus.edu.sg/~research/tutorial/image.htm. Accessed 15 Mar 2020
Dua, Y., Kumar, V., Singh, R.S.: Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 59(9), 090902 (2020)
Foster, D.: Time-lapse hyperspectral images of natural scenes 2015. http://personalpages.manchester.ac.uk/staff/david.foster/Time-Lapse_HSIs/Time-Lapse_HSIs_2015.html. Accessed 20 Feb 2020
Foster, D.H., Amano, K., Nascimento, S.M.: Time-lapse ratios of cone excitations in natural scenes. Vision Res. 120, 45–60 (2016)
Gao, Z.C., Zhang, X.L.: Lossless compression of hyperspectral images using improved locally averaged interband scaling lookup tables. In: 2011 International Conference on Wavelet Analysis and Pattern Recognition, pp. 91–96. IEEE (2011)
Gupta, S., Agarwal, I., Singh, R.S.: Workflow scheduling using jaya algorithm in cloud. Concurr. Comput. Pract. Exp. 31(17), e5251 (2019)
Huang, B., Sriraja, Y.: Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: Image and Signal Processing for Remote Sensing XII, vol. 6365, p. 63650L. International Society for Optics and Photonics (2006)
Kiely, A.B., Klimesh, M.A.: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 47(8), 2672–2678 (2009)
Kuanar, S., Athitsos, V., Pradhan, N., Mishra, A., Rao, K.R.: Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2576–2580. IEEE (2018)
Kuanar, S., Conly, C., Rao, K.: Deep learning based HEVC in-loop filtering for decoder quality enhancement. In: 2018 Picture Coding Symposium (PCS), pp. 164–168. IEEE (2018)
Kuanar, S., Rao, K., Conly, C.: Fast mode decision in HEVC intra prediction, using region wise CNN feature classification. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–4. IEEE (2018)
Kuanar, S., Rao, K., Mahapatra, D., Bilas, M.: Night time haze and glow removal using deep dilated convolutional network. arXiv:1902.00855 (2019)
Licciardi, G.A.: Hyperspectral compression. In: Data Handling in Science and Technology, vol. 32, pp. 55–67. Elsevier (2020)
Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using calic. IEEE Geosci. Remote Sens. Lett. 1(1), 21–25 (2004)
Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)
Mielikainen, J., Huang, B.: Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length. IEEE Geosci. Remote Sens. Lett. 9(6), 1118–1121 (2012)
Mielikainen, J., Toivanen, P.: Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 41(12), 2943–2946 (2003)
Muñoz-Gómez, J., Bartrina-Rapesta, J., Blanes, I., Jiménez-Rodríguez, L., Aulí-Llinàs, F., Serra-Sagristà, J.: 4d remote sensing image coding with jpeg2000. In: Satellite Data Compression, Communications, and Processing VI, vol. 7810, p. 78100X. International Society for Optics and Photonics (2010)
Nagendran, R., Vasuki, A.: Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int. J. Wavelets Multiresolut. Inf. Process. 18(01), 1941008 (2020)
NASA: 123.0-b-info testdata. https://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData. Accessed 10 Mar 2020
Sarkis, M., Diepold, K.: Depth map compression via compressed sensing. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 737–740. IEEE (2009)
Shen, H., Jiang, Z., Pan, W.D.: Efficient lossless compression of multitemporal hyperspectral image data. J. Imaging 4(12), 142 (2018)
Shen, H., Li, X., Zhang, L., Tao, D., Zeng, C.: Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse bayesian dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(2), 894–906 (2013)
Shen, H., Pan, W.D., Dong, Y.: Efficient lossless compression of 4d hyperspectral image data. In: Proceedings of the 3rd International Conference on Advances in Big Data Analytics, Las Vegas, NV, USA, pp. 25–28 (2016)
Song, J., Gao, S., Zhu, Y., Ma, C.: A survey of remote sensing image classification based on CNNS. Big Earth Data 3(3), 232–254 (2019)
Song, J., Zhang, Z., Chen, X.: Lossless compression of hyperspectral imagery via RLS filter. Electron. Lett. 49(16), 992–994 (2013)
Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis. Comput. 36, 1869–1882 (2019)
Zhu, W., Du, Q., Fowler, J.E.: Multitemporal hyperspectral image compression. IEEE Geosci. Remote Sens. Lett. 8(3), 416–420 (2010)
Zikiou, N., Lahdir, M., Helbert, D.: Support vector regression-based 3d-wavelet texture learning for hyperspectral image compression. Vis. Comput. 36, 1473–1490 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dua, Y., Singh, R.S. & Kumar, V. Compression of multi-temporal hyperspectral images based on RLS filter. Vis Comput 38, 65–75 (2022). https://doi.org/10.1007/s00371-020-02000-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-02000-6