Abstract
Understanding how people perceive the visual complexity of shapes has important theoretical as well as practical implications. One school of thought, driven by information theory, focuses on studying the local features that contribute to the perception of visual complexity. Another school, in contrast, emphasizes the impact of global characteristics of shapes on perceived complexity. Inspired by recent discoveries in neuroscience, our model considers both local features of shapes: edge lengths and vertex angles, and global features: concaveness, and is in 92% agreement with human subjective ratings of shape complexity. The model is also consistent with the hierarchical perceptual learning theory, which explains how different layers of neurons in the visual system act together to yield a perception of visual shape complexity.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahissar, M.: Perceptual learning. Curr. Dir. Psychol. Sci. 8, 124–128 (1999)
Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)
Attneave, F.: Physical determinants of the judged complexity of shapes. J. Exp. Psychol. 53(4), 221–227 (1957)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)
Brehar, R., Mitrea, D.A., Vancea, F., Marita, T., Nedevschi, S., Lupsor-Platon, M., Rotaru, M., Badea, R.I.: Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors 20(11), 3085 (2020)
Brinkhoff, T., Kriegel, H.P., Schneider, R., Braun, A.: Measuring the complexity of polygonal objects. In: Proceedings of 3rd ACM International Workshop on Advances in Geographical Information Systems, pp. 109–117. Citeseer (1995)
Brown, D.R., Owen, D.H.: The metrics of visual form: methodological dyspepsia. Psychol. Bull. 68(4), 243–259 (1967)
Carballal, A., Fernandez-Lozano, C., Rodriguez-Fernandez, N., Santos, I., Romero, J.: Comparison of outlier-tolerant models for measuring visual complexity. Entropy 22(4), 488 (2020)
Chen, Y., Sundaram, H.: Estimating complexity of 2D shapes. In: Proceedings of 7th Workshop on Multimedia Signal Processing, pp. 1–4 (2005)
Der Helm, P.A.V.: Simplicity versus likelihood in visual perception: from surprisals to precisals. Psychol. Bull. 126(5), 770–800 (2000)
Der Helm, P.A.V., Leeuwenberg, E.: Goodness of visual regularities: a nontransformational approach. Psychol. Rev. 103(3), 429–456 (1996)
Diaconescu, A.O., Litvak, V., Mathys, C., Kasper, L., Friston, K.J., Stephan, K.E.: A computational hierarchy in human cortex. arXiv preprint arXiv:1709.02323 (2017)
Donderi, D.C.: Visual complexity: a review. Psychol. Bull. 132(1), 73–97 (2006)
Dou, Q., Zheng, X.S., Sun, T., Heng, P.A.: Webthetics: quantifying webpage aesthetics with deep learning. Int. J. Hum. Comput Stud. 124, 56–66 (2019)
Dubitzky, W., Granzow, M., Berrar, D.P.: Fundamentals of Data Mining in Genomics and Proteomics. Springer, New York (2007)
Dutt M.B.A.: Boundary and Shape Complexity of a Digital Object. Lecture Notes in Computer Science Book Series 10149, pp. 105–117 (2017)
Everitt, B., Skrondal, A.: The Cambridge Dictionary of Statistics, vol. 106. Cambridge University Press, Cambridge (2002)
Feldman, J.: Bayesian contour integration. Attent. Percept. Psychophys. 63(7), 1171–1182 (2001)
Feldman, J., Singh, M.: Information along contours and object boundaries. Psychol. Rev. 112(1), 243–252 (2005)
Gartus, A., Leder, H.: Predicting perceived visual complexity of abstract patterns using computational measures: the influence of mirror symmetry on complexity perception. PLoS ONE 12(11), e0185276 (2017)
Gellmann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2(1), 44–52 (1996)
Graham, L.: Gestalt theory in interactive media design. J. Hum. Soc. Sci. 2(1), 571 (2008)
Haddad, K., Rahman, A., Zaman, M.A., Shrestha, S.: Applicability of monte carlo cross validation technique for model development and validation using generalised least squares regression. J. Hydrol. 482, 119–128 (2013)
Harper, S., Jay, C., Michailidou, E., Quan, H.: Analysing the visual complexity of web pages using document structure. Behav. Inf. Technol. 32(5), 491–502 (2013)
Hawkins, D.M., Lombard, F.: Cusum control for data following the von mises distribution. J. Appl. Stat. 44(8), 1319–1332 (2017)
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
Kanwisher, N.: Functional specificity in the human brain: A window into the functional architecture of the mind. Proc. Nat. Acad. Sci. USA 107, 11163–11170 (2010)
Kayaert, G., Wagemans, J.: Delayed shape matching benefits from simplicity and symmetry. Vis. Res. 49(7), 708–717 (2009)
Kim, S., Lyu, I., Fonov, V., Vachet, C., Hazlett, H., Smith, R., Piven, J., Dager, S., Mckinstry, R., Pruett, J., Evans, A., Collins, D., Botteron, K., Schultz, R., Gerig, G., Styner, M.: Development of cortical shape in the human brain from 6 to 24 months of age via a novel measure of shape complexity. NeuroImage 35, 163–176 (2016)
Koffka, K.: Principles of Gestalt Psychology, vol. 44. Routledge, Abingdon (2013)
Konovalov, D.A., Sim, N., Deconinck, E., Heyden, Y.V., Coomans, D.: Statistical confidence for variable selection in qsar models via monte carlo cross-validation. J. Chem. Inf. Model. 48(2), 370–383 (2008)
Kwon, S.: Mun DKBHS: feature shape complexity: a new criterion for the simplification of feature-based 3d cad models. Int. J. Adv. Manuf. Technol. 88(5–8), 1–13 (2017)
Matsumoto, T., Sato, K., Matsuoka, Y., Kato, T.: Quantification of “complexity” in curved surface shape using total absolute curvature. Comput. Graph. 78(10), 108–115 (2019)
Maunsell, J.H.R., Newsome, W.T.: Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10(1), 363–401 (1987)
Mavrides, C.M., Brown, D.R.: Discrimination and reproduction of patterns: feature measures and constraint redundancy as predictors. Attent. Percept. Psychophys. 6(5), 276–280 (1969)
McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learning. In: International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar), pp. 118–133. Springer (2020)
Mcdougall, S., De Bruijn, O., Curry, M.B.: Exploring the effects of icon characteristics on user performance: the role of icon concreteness, complexity and distinctiveness. J. Exp. Psychol. Appl. 6(4), 291–306 (2000)
Murray, S.O., Kersten, D., Olshausen, B.A., Schrater, P., Woods, D.L.: Shape perception reduces activity in human primary visual cortex. Proc. Nat. Acad. Sci. USA 99, 15164–15169 (2002)
Page, D.L., Koschan, A., Sukumar, S.R., Rouiabidi, B., Abidi, M.A.: Shape analysis algorithm based on information theory. In: Proceedings of International Conference on Image, vol. 1, pp. 229–232 (2003)
Perkio, J., Hyvarinen, A.: Modelling image complexity by independent component analysis, with application to content-based image retrieval. In: Proceedings of 19th International Conference Artificial Neural Networks, pp. 704–714 (2009)
Psarra, S., Grajewski, T.: Describing shape and shape complexity using local properties. In: Proceedings of 3rd International Space Syntax Symposium, pp. 28.1–28.16. Citeseer (2001)
Rashid, M., Khan, M.A., Alhaisoni, M., Wang, S.H., Naqvi, S.R., Rehman, A., Saba, T.: A sustainable deep learning framework for object recognition using multi-layers deep features fusion and selection. Sustainability 12(12), 5037 (2020)
Rigau, J., Feixas, M., Sbert, M.: An information-theoretic framework for image complexity. In: Computational Aesthetics in Graphics, Visualization and Imaging, pp. 177–184 (2005)
Rossignac, J.: Shape complexity. Vis. Comput. 21(12), 985–996 (2005)
Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. Comput. Vis. Pattern Recognit. 2, 994–1000 (2005)
Severeyn, E., Velásquez, J., Herrera, H., Perpiñan, G., Wong, S., Altuve, M.: Estimation of invasive physiological parameters from non invasive parameters using dimensionless numbers and Monte Carlo cross-validation. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1–5. IEEE (2019)
Sieu, B., Gavrilova, M.: Biometric identification from human aesthetic preferences. Sensors 20(4), 1133 (2020)
Su, H., Bouridane, A., Crookes, D.: Scale adaptive complexity measure of 2D shapes. In: Proceedings of 18th International Conference of Pattern Recognition, vol. 2, pp. 134–137 (2006)
Swindale, N.V.: Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78(1), 45–56 (1998)
Treisman, A.: Perceptual grouping and attention in visual search for features and for objects. J. Exp. Psychol. Hum. Percept. Perform. 8(2), 194 (1982)
Tuch, A.N., Bargas-Avila, J.A., Opwis, K., Wilhelm, F.H.: Visual complexity of websites: effects on users’ experience, physiology, performance, and memory. Int. J. Hum Comput Stud. 67(9), 703–715 (2009)
Ullman, S., Vidalnaquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nat. Neurosci. 5(7), 682–687 (2002)
Xu, Q., Liang, Y., Du, Y.: Monte carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J. Chemom. 18(2), 112–120 (2004)
Zheng, X.S., Chakraborty, I., Lin, J.J., Rauschenberger, R.: Correlating low-level image statistics with users—rapid aesthetic and affective judgments of web pages. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1–10 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dai, L., Zhang, K., Zheng, X.S. et al. Visual complexity of shapes: a hierarchical perceptual learning model. Vis Comput 38, 419–432 (2022). https://doi.org/10.1007/s00371-020-02023-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-02023-z