Skip to main content

Advertisement

Log in

Despeckling and enhancement of ultrasound images using non-local variational framework

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Speckles are introduced in the ultrasound data due to constructive and destructive interference of the probing signals that are used for capturing the characteristics of the tissue being imaged. There are a plethora of models discussed in the literature to improve the contrast and resolution of the ultrasound images by despeckling them. There is a class of models that assumes that the noise is multiplicative in its original form, and transforming the model to a log domain makes it an additive one. Nevertheless, such a transformation duly oversimplifies the scenario and does not capture the inherent properties of the data-correlated nature of speckles. Therefore, it results in poor reconstruction. This problem is addressed to a considerable extent in the subsequent works by adopting various models to address the data-correlated nature of the noise and its distributions. This work introduces a weberized non-local total bounded variational model based on the noise distribution built on the Retinex theory. This perceptually inspired model apparently restores and improves the contrast of the images without compromising much on the details inherently present in the data. The numerical implementation of the model is carried out using the Bregman formulation to improve the convergence rate and reduce the parameter sensitivity. The experimental results are highlighted and compared to demonstrate the efficiency of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Michailovich, O.V., Tannenbaum, A.: Despeckling of medical ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 64–78 (2006)

    Article  Google Scholar 

  2. Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–2(2), 165–168 (1980)

    Article  Google Scholar 

  3. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–4(2), 157–166 (1982)

    Article  Google Scholar 

  4. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–7(2), 165–177 (1985)

    Article  Google Scholar 

  5. Ekstrom, M.: Realizable wiener filtering in two dimensions. IEEE Trans. Acoust. Speech Signal Process. 30(1), 31–40 (1982)

    Article  Google Scholar 

  6. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  7. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  8. Krissian, K., Westin, C.F., et al.: Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    Article  MathSciNet  Google Scholar 

  9. Aja-Fernandez, S., Alberola-Lopez, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  10. Bini, A.A., Bhat, M.S.: Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidimension. Syst. Signal Process. 25(1), 41–65 (2014)

    Article  Google Scholar 

  11. Jidesh, P., Bini, A.A.: Image despeckling and deblurring via regularized complex diffusion. SIViP 11(6), 977–984 (2017)

    Article  Google Scholar 

  12. Ramos-Llorden, G., Ferrero, G.V.-S., Martin-Fernandez, M., et al.: Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans. Image Process. 24(1), 345–358 (2015)

    Article  MathSciNet  Google Scholar 

  13. Coupe, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ambrosanio, M., Kanoun, B., Baselice, F.: wksr-nlm: an ultrasound despeckling filter based on patch ratio and statistical similarity. IEEE Access 8, 150773–150783 (2020)

    Article  Google Scholar 

  15. Xizhi, Z.: The application of wavelet transform in digital image processing. In: 2008 International Conference on MultiMedia and Information Technology, pp. 326–329 (2008)

  16. Li, Y., Gong, H., Feng, D., Zhang, Y.: An adaptive method of speckle reduction and feature enhancement for sar images based on curvelet transform and particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 49(8), 3105–3116 (2011)

    Article  Google Scholar 

  17. Simoncelli, E.P., Adelson, E.H.: Noise removal via Bayesian wavelet coring. In: Proceedings of 3rd International Conference on Image Processing, pp. 379–382. IEEE (1996)

  18. Achim, A.B.A., Tsakalides, P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  19. Nagare, M.B., Patil, B.D., Holambe, R.S.: A multi directional perfect reconstruction filter bank designed with 2-d eigenfilter approach: application to ultrasound speckle reduction. J. Med. Syst. 41(2), (2017)

  20. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  21. Choi, H., Jeong, J.: Despeckling algorithm for removing speckle noise from ultrasound images. Symmetry 12(6), 938 (2020)

    Article  Google Scholar 

  22. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  Google Scholar 

  23. Huang, L.L., Xiao, L., Wei, Z.H.: Multiplicative noise removal via a novel variational model. J. Image Video Process. 2010(1), 250768 (2010)

    Google Scholar 

  24. Xiao, L., Huang, L.-L., Wei, Z.-H.: A weberized total variation regularization-based image multiplicative noise removal algorithm. EURASIP J. Adv. SignalProcess. 2010(1), 490384 (2010)

    Article  Google Scholar 

  25. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  26. Liu, X., Huang, L.: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97, 224–233 (2014)

    Article  MathSciNet  Google Scholar 

  27. Jidesh, P., Balaji, B.: Image despeckling with non-local total bounded variation regularization. Comput. Electr. Eng. 70(1), 631–646 (2018)

    Article  Google Scholar 

  28. Mei, K., Hu, B., Fei, B., Qin, B.: Phase asymmetry ultrasound despeckling with fractional anisotropic diffusion and total variation. IEEE Trans. Image Process. 29, 2845–2859 (2020)

    Article  Google Scholar 

  29. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977)

  30. Kimmel, R., Elad, M., Shaked, D., et al.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  Google Scholar 

  31. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  Google Scholar 

  32. Zosso, D., Tran, G., Osher, S.: Non-local retinex-a unifying framework and beyond. SIAM J. Imaging Sci. 8(2), 787–826 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L., Li, H., Shen, H.: Perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)

    Article  Google Scholar 

  34. Ren, X., Li, M., Cheng, W.-H., Liu, J.: Joint enhancement and denoising method via sequential decomposition. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–15. IEEE (2018)

  35. Jidesh, P., Febin, I.P.: A perceptually inspired variational model for enhancing and restoring remote sensing images. IEEE Geosci. Remote Sens. Lett., 1–15 (2020)

  36. Febin, I.P., Jidesh, P., Bini, A.A.: A retinex based variational model for enhancement and restoration of low contrast remote sensed images corrupted by shot noise. IEEE J. Select.Top. Appl. Earth Observ. Remote Sens. 13, 941–949 (2020)

    Article  Google Scholar 

  37. Liu, B., Liu, J.: An improved non-local mean ultrasound image denoising algorithm. In: Proceedings of the 2018 3rd International Conference on Control, Automation and Artificial Intelligence (CAAI 2018), pp. 114–118. Atlantis Press (2018)

  38. Shen, J.: On the foundations of vision modeling I. weber’s law and weberized tv restoration. Physica D 175(3), 241–251 (2003)

    Article  MathSciNet  Google Scholar 

  39. Chan, S.H., Khoshabeh, R., Gibson, K.B., et al.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)

    Article  MathSciNet  Google Scholar 

  40. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2010)

    Article  MathSciNet  Google Scholar 

  41. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. IEEE Geosci. Remote Sens. Lett. 45(1), 272–293 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Liu, X., Huang, L.: Split Bregman iteration algorithm for total bounded variation regularization based image deblurring. J. Math. Anal. Appl. 372(2), 486–495 (2010)

    Article  MathSciNet  Google Scholar 

  43. Born, J., Wiedemann, N., Brändle, G., Buhre, C., Rieck, B., Borgwardt, K.: Accelerating covid-19 differential diagnosis with explainable ultrasound image analysis. arXiv preprintarXiv:2009.06116 (2020)

  44. Gomez, L., Ospina, R., Frery, A.C.: Unassisted quantitative evaluation of despeckling filters. Remote Sens. 9(4), 389 (2017)

    Article  Google Scholar 

  45. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a ’completely blind’ image quality analyzer. ISPRS Int. J. Geo-Inform. 20(3), 209–212 (2013)

    Google Scholar 

  46. Karathanassi, V., Kolokousis, P., Ioannidou, S.: A comparison study on fusion methods using evaluation indicators. Int. J. Remote Sens. 28(10), 2309–2341 (2007)

    Article  Google Scholar 

  47. Matkovic, K., Neumann, L.: et al. Global contrast factor - a new approach to image contrast. In: Proceedings of the First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 159–167 (2005)

  48. Timischl, F.: The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy. Scanning 37(1), 54–62 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors I.P Febin and P. Jidesh would like to thank Science and Engineering Research Board, India, for providing financial support under the Project Grant No. ECR/2017/000230

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jidesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Febin, I.P., Jidesh, P. Despeckling and enhancement of ultrasound images using non-local variational framework. Vis Comput 38, 1413–1426 (2022). https://doi.org/10.1007/s00371-021-02076-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02076-8

Keywords