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Abstract
Speckles are introduced in the ultrasound data due to constructive and destructive interference of the probing signals that are
used for capturing the characteristics of the tissue being imaged. There are a plethora of models discussed in the literature to
improve the contrast and resolution of the ultrasound images by despeckling them. There is a class of models that assumes
that the noise is multiplicative in its original form, and transforming the model to a log domain makes it an additive one.
Nevertheless, such a transformation duly oversimplifies the scenario and does not capture the inherent properties of the data-
correlated nature of speckles. Therefore, it results in poor reconstruction. This problem is addressed to a considerable extent in
the subsequent works by adopting various models to address the data-correlated nature of the noise and its distributions. This
work introduces a weberized non-local total bounded variational model based on the noise distribution built on the Retinex
theory. This perceptually inspired model apparently restores and improves the contrast of the images without compromising
much on the details inherently present in the data. The numerical implementation of themodel is carried out using the Bregman
formulation to improve the convergence rate and reduce the parameter sensitivity. The experimental results are highlighted
and compared to demonstrate the efficiency of the model.

Keywords Despeckling · Non-local Retinex model · Perceptually inspired framework · Variational formulation · Bregman
scheme

1 Introduction

Ultrasound (US) imaging is a diagnostic imaging technique
to visualize various subcutaneous body structures such as
muscles, vessels, and joints, for detecting or diagnosing the
pathological symptoms. There are essentially four different
modes of scanning as far as US sonography is concerned.
Among them, B-mode sonography is more popular due to its
extent of applicability and wide range of acceptance among
the medical imaging community for diagnostic purpose. The
extensive use of US imaging is justified by its non-invasive
and non-ionizing nature of characterizing the tissue. The US
scanning system sends acoustic signals to probe the nature of
tissues in the human body, and based on the reflected pattern,
the images are formed. However, the acoustic signals used
for probing the tissues result in constructive and destructive
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interferences causing high- and low-amplitude deflections in
themagnitude of the captured data usually coined as speckles
[1]. Speckle by its sheer nature is data correlated and cannot
be neglected like the other noise interventions [1]. Speckles
are not completely noise components though apparently they
seem tobe.They carry information about the tissue.However,
their presence results in spurious analysis by the medical
experts. The low-amplitude signals are sometimes treated as
blood vessels though they are formed due to the destructive
interference of the waves. The formation of the speckles has
inspired many researchers to assume the model of formation
as multiplicative.

The statistical filterswere introduced to effectively address
the multiplicative speckled interference in many previous
works [2–5]. The pioneer works in this field are Lee filer [2],
Frost filter [3], and Kuan filter [4]. The extent of averaging
in these filters depends on the coefficient of variation of the
image. The areas with high variance are smoothed at a lesser
magnitude compared to the low-variance regions which are
categorically smooth in nature. This property in turn pre-
serves the structures apparently. The minimum mean square

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02076-8&domain=pdf


1414 I. P. Febin, P. Jidesh et al.

filter based on the local variance introduced by Weiner [5]
is another similar approach in this direction. Nevertheless,
these filter duly neglect the noise distribution in the input
and the correlated nature of the noise to a large extent. These
issues are addressed in their subsequent modifications.

Anisotropic diffusion models inspired by the Perona–
Malik model [6] has apparently changed the outlook of the
image restoration framework. The Perona–Malik model is
a nonlinear diffusion model whose diffusion coefficient is
controlled by a nonlinear function of the gradient term.

Themodels such as speckle reducing anisotropic diffusion
(SRAD) [7], oriented SRAD (OSRAD) [8], and direction-
preserving anisotropic diffusion (DPAD) [9] are the notable
anisotropic diffusion models introduced for despeckling
images. In these filters, the diffusion magnitude is controlled
by the coefficient of variation which depends on the local
mean and variance of the data. For instance, the instantaneous
coefficient of diffusion serves as the edge detection function
in [7] and the eigenvectors of the structure tensor are used
to control the magnitude of diffusion in [8]. The eigenvector
in the principal major direction is smoothed less compared
to the principal minor direction in case of a 2D matrix. This
eventually results in despeckling with less penalization of
the structures. There are certain advancements suggested for
these filters as well [10,11] to improve their performance
in terms of image restoration. In [10], the authors propose
a speckle reducing model where a speckle reducing edge
detector is embedded in the well-known “Geodesic snakes”
model. Similarly, in [11] the authors introduce a complex
diffusion-driven coefficient to drive the process. Recently,
another improved diffusion-basedmethod has been proposed
in [12]which is anAnisotropicDiffusion Filter withMemory
Based on Speckle Statistics (ADMSS) where they have tried
to control the diffusion operation on the basis of structural
information in memory. However, these filters too ignore
the distribution of the data at large. An optimized Bayesian
nonlocal means (OBNLM) [13] method is also introduced
for speckle reduction which is based on the similarity of
the patches of pixels. Later, to eliminate the drawback of
over-smoothing and to enable texture preservation, non-local
methods with different similarity measures are also intro-
duced, see [14].

Thresholding schemes are employed in large scale in
image restoration applications. In particular,multi-resolution
models have captured the attention lately and they are exten-
sively employed in image restoration. For instance, wavelet
models are prominent in this regard. The wavelet decom-
position approximates a scale space representation of the
data [15]. The noise also gets represented in the scale space
domain, and an appropriate thresholding scheme should
effectively remove noise features. Hard and soft (adaptive)
thresholding schemes are proposed in the literature to effec-
tively handle the noise interventions. Apart from wavelet

models, other advanced versions such as curvelets have also
been proposed for restoration activities in the literature, see
[16] for details. These methods convert the original image
into a logarithmic domain and make use of the Gaussian
distribution assumption of the sub-band coefficients. One
of the main drawbacks here is related to the inaccuracy in
choosing an appropriate threshold. Later, several researchers
proposed methods for modified threshold selection process
which includes the nonlinear estimator in [17]. In [18],
authors apply a log transform on the input to make the
data additive in nature but later assumes the wavelet sub-
bands to follow non-Gaussian statistics such as heavy-tailed
alpha-stable distribution. Recently, a multi-directional 2-D
eigenfilter approach for US denoising is proposed by Nagare
et al. in [19]. This method uses Translation Invariant Pyra-
midal Directional filter Bank (TIPDFB) to decompose the
image, and thresholding is applied on all the sub-bands to
remove noise. All these multiscale methods use the Gaussian
distribution assumption in a log domain instead of incorpo-
rating speckle characteristics in the denoising process. The
additive Gaussian noise has been explored extensively in the
literature [20,21], and a simplified log transformation theo-
retically converts a multiplicative model to an additive one.
However, such oversimplifiedmodels tend to neglect the very
basic nature of the noise and its distributional characteristics.
Even under a log transformation the noise does not seems to
become data-uncorrelated [22].

The variational frameworks are the extensions of penal-
ization theory wherein the optimization functional is defined
in terms of the regularization and data fidelity aspects of
the data. The total variation (TV) regularization is a well-
known variational model for image restoration, see [20] for
the details. However, the linear approximation of the model
results in undesired effects in the restored output. Moreover,
the model assumes a Gaussian distributed white noise inter-
vention in the data. A notable modification to this model to
incorporate the multiplicative Gamma noise is introduced in
[22]. Here, a Bayesian formulation is explored for reinter-
preting the minimization problem as a posterior probability
minimization model. The model is found to perform well
in case of multiplicative speckles following a Gamma law.
Many variant thoughts in this direction are seen in works
[23] and [24]. However, these methods too are not efficient
enough to maintain small textures and details present in the
data, even though they ensure the preservation of edge details.
To address this issue to a considerable extend, a new cate-
gory of variational methods was introduced, which is based
on the non-local (TV) framework proposed by Gilboa and
Osher in [25]. Some variations of this model are found in
[26] and [27], where the later works propose a nonlocal total
bounded variation regularization model for speckle removal.
Compared to the other methods, the non-local (TV) algo-
rithms have succeeded in ensuring the efficiency in retaining
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small details and textures. In [28], authors proposed a combi-
nation of diffusion and TV filters where a phase asymmetry
measure for edge detection is being used to distinguish edges
and constant intensity regions.

Manyof themodels discussed so far seek tofind adespeck-
ling solution that eventually retains the edges and other
details present in the data to a considerable extend. Neverthe-
less, the images captured under theUSmodality are observed
to be deficient in contrast aspects as well. An uneven contrast
distribution duly hinders the subsequent analysis phase, thus
spoiling the diagnosis and detection phase of automated sys-
tems. This has been a matter of concern among the research
community. The untiring efforts in addressing the uneven dis-
tribution of the data resulted in Retinex-based models, which
are extensively used in low-contrast photography reconstruc-
tion algorithms.

The Retinex theory has evolved form the Land’s key dis-
covery of colour constancy phenomenon in human visual
system [29]. This study explained that the human eye can
adjust with illumination changes and it can correctly dis-
tinguish and match colours of objects even in varying
illuminations, so we have

U (x, y) = L(x, y)R(x, y), (1)

where R ∈ [0, 1], L ∈ R
2, and U ∈ R

2. It suggests that
any pixel (x,y) in an intensity imageU can be represented as
a product of reflectance R and illumination L . Readers are
invited to refer [29]. This decomposition of images helps in
eliminating the effect of nonuniform illumination. However,
estimation of illumination from an intensity image is an ill-
posed problem.

Kimmel et al. in [30] introduced a variational model for
Retinex theory. The authors described this problem as a
quadratic optimization equationwhere L2 normof the illumi-
nation and reflectance part is evaluated to ensure the smooth
and visually appealing result. The optimization model is
given by:

min E[l] =
∫

Ω

(
‖∇l‖22 + α(l − u)2 + β‖∇(l − u)‖22

)
dxdy,

(2)

where l and u represent the illumination and intensity matri-
ces in log domain and u = l + r . However, smoothing
the reflectance matrix results in penalization of textures and
details. To address this drawback, a (TV) Retinex model is
introduced in [31].

min
l∈L2(Ω),r∈L1(Ω)

E[l, r ] =
∫

Ω

‖∇r‖dxdy + α

∫
Ω

‖∇l‖22dxdy

+ β

∫
Ω

(l − r − u)2dxdy + μ

∫
Ω

l2dxdy.

(3)

In this model, the authors use (TV) norm in the reflectance
term r for preserving more details, see equation (3). Later,
inspired from the non-local (TV) proposed by Gilboa and
Osher in [25], a non-local Retinex version was also intro-
duced in [32], see [25] and [32] for the details of non-local
operators. All of these variational Retinex methods are pro-
posed for enhancing natural images by reducing non-uniform
illumination. In addition to this, a few variants of variational
Retinex models are also proposed for image enhancement in
some specific domains, see [33].

As studied in many related works, the US images are cor-
rupted by data-correlated multiplicative noise. The noise in
many of the instances is observed to follow a Gamma [22]
distribution. Amodel that duly respects the distribution char-
acteristic of the speckle noise is expected to perform better
than its counterparts in restoring the data. Moreover, most of
the US images used in various image analysis applications
are of poor quality due to various factors influencing their
formation as discussed earlier in this paper. These facts call
for a holistic model which can address all the degradations
simultaneously. For instance, the contrast unevenness of the
US data duly hinders the analysis phase and sometimes even
results in spurious diagnosis. Most of the despeckling proce-
dures in the literature at times do not considerably improve
the contrast and resolution aspects of the data well. This is
another concern which we intent to address in this study.
The attempt to address both denoising and enhancement by
a variational Retinex model is relatively a new approach. A
similar attempt for Gaussian distributed noise is found in
[34] and [35], and along the similar lines, the model is fur-
ther extended to Poisson noise in [36]. This paper introduces
a model that does not neglect noise distribution and restores
and enhances the US images without penalizing the details
present in them. A non-local variational Retinex framework
is used to design the model.

The rest of the article is organized as follows. In Sect. 2,
the proposed framework for denoising and enhancement is
explained. Numerical implementation of the proposed opti-
mization problem is also elaborated in this section. The
details of the experimental analysis conducted are given in
Sect. 3. The last section provides concluding remarks and
mentions the scope of future work.

2 Proposed framework

As studied inmany previousworks, a speckle distorted image
is generally represented as

U0 = U × n, (4)

where n is multiplicative data-correlated noise, U denotes
the original amplitude data (unobserved one), and U0 repre-
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sents its speckled version. The noise distribution is observed
to follow a Gamma law. This claim has been substantiated in
many previous works [22,23,37]. Now, we derive the opti-
mization model for denoising using the Bayesian framework
as done in many preceding works, see [22]. The Bayesian
law says

P(U |U0) = P(U0|U )P(U )

P(U0)
, (5)

where P(U |U0) is the posterior probability (i.e. conditional
probability ofU givenU0), P(U0|U ) is the likelihood prob-
ability, and P(U ) is the prior probability on U . Maximizing
the posterior probability gives the restored version of the
image, so we have:

max
U

P(U |U0) = max {P(U0|U )P(U )} , (6)

since P(U0) is constant with respect toU , we omit this term
from further evaluations. However, maximizing the function
and its log likelihood is one and the same (as log function is
monotonic) we have

max
U

log(P(U |U0)) = max {log(P(U0|U )) + log(P(U ))} .

(7)

Further maximizing a function is the same as minimizing its
negative, so

min
U

{− log(P(U |U0))} = min
U

{− log(P(U0|U )) − log(P(U ))} .

(8)

According to our assumption, the noise n follows a Gamma
law and based on the proof given in [22], it implies

P(U0|U ) = J J

U JΓ (J )
U J−1
0 e− JU0

U , (9)

whereΓ is the Gamma function and J represents the number
of images used in averaging; it is one in this case as we are
using a single image. We also assume U to follow a Gibbs
prior, i.e. P(U ) = e−λφ(U ), where φ(.) is the weighted and
weberized non-local TBV prior. Therefore, equation (8) can
be represented as

min
U

{− log(P(U |U0))} = min
U

{
log(U ) + U0

U
+ λxφ(U )

}
,

(10)

where λx ∈ (0,∞) denotes the positive scalar regularization
parameter. Considering Ω as a image domain, the derived
functional term takes the form:

F(U ) =
∫

Ω

log(U ) + (U0/U ) + λx

∫
Ω

φ(U )dxdy. (11)

Unlike the model in [22], we use a novel weighted and
weberized non-local TBV prior to obtain a better denoising
and contrast improvement to the input images.Based on these
assumptions, the model proposed herein is represented as:

min
l,r ,u

{E(l, r , u)} = λ0

∫
Ω

‖∇l‖22dxdy

+ λ1

∫
Ω

W (r)‖∇r̂‖dxdy

+ λ2

∫
Ω

(exp(r) − 1/2)2dxdy

+ λ3

∫
Ω

(W (u)‖∇û‖ + β‖u‖22)dxdy

+ λ4

∫
Ω

(r − u + l)2dxdy

+ λ5

∫
Ω

log(U ) + (U0/U ), (12)

Inspired by previous variational methods, this model also
evaluates the L2 norm of illumination (|∇l‖22) to ensure its
smoothness. As the reflectance part of the image is contain-
ingmore texture information, it is proposed to use aweighted
non-local (TV) (W (r)‖∇r̂‖).AsmentionedbyKimmel et al.,
in [30], the reflectance is in the range [0, 1] and it is forced to
be close to average value by adding a term (exp(r) − 1/2)2

in minimization function. The term (r − u + l) ensures
that the intensity matrix evaluated in each step is a combi-
nation of corresponding r and l estimates and vice versa.
In this proposed model, we incorporate a weighted non-
local total bounded variation (TBV) [27] of intensity matrix
(W (u)‖∇û‖ + β‖u‖22) to eliminate the noise in images. The
TBV term used is a combination of NLTV and L2 norm of
the intensity. As the value of β increases, the smoothing of u
also increases. Hence, TBV is efficient in giving better results
when the data are heavily corrupted by noise. The drawback
of using L2 norm is that it does not care about the edges and
details in an image, which is duly addressed by NLTV term
in TBV. The intensity smoothing is constrained by the term∫
Ω
log(U ) + (U0/U ) which denotes the data fidelity. The

term is conditionally convex (i.e. convex if 2U0 > U .), and
it is derived using the Bayesian MAP estimator under the
assumption of a Gamma distributed noise in the input image,
refer equation (10) and (11). This term tends to retain more
textures and small details while reducing the speckle and
eventually enhancing the input. The reflectance and inten-
sity are assumed to be the properties of the object being
imaged, and hence, they are expected to carry non-smooth
information. Therefore, the non-local (TV) norm is employed
to ensure proper retention of the structures. Furthermore, û
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and r̂ denote the Weberized intensity and reflectance terms,
used to improve the visual quality of the resultant image,
see [38] for the details. To further assure the preservation
of fine details, use of weight functions W (u) and W (r) is
proposed in this model. The weight W (u) is evaluated as
1 + 1

1+‖∇u‖1 , where weight W (u) increases as the magni-
tude of gradient decreases and reaches a maximum value
two, for a homogeneous region. Similarly, W (r) is also esti-
mated. The luminance being the property of the source, an
L2 norm is employed to ensure its smooth transition. The
control parameters λ0 to λ5 can take positive scalar val-
ues which can be tuned to get the optimally enhanced and
denoised result. Since the optimization framework contains
six different terms, the solution is not trivial and it is hard
to employ a simultaneous solution for all the terms. As one
term influences the other one, we need to seek for a solu-
tion by separating the variables, so a split scheme is usually
employed for the same.

The optimization problem in equation (12) shall be split
into three separate minimization problems (in terms of the
three quantities r , l and u) as given below:

min
r

{E(r)} = λ1

∫
Ω

W (r)‖∇r̂‖dxdy

+ λ2

∫
Ω

(exp(r) − 1/2)2dxdy

+ λ4

∫
Ω

(r − u + l)2dxdy, (13)

min
u

{E(u)} = λ3

∫
Ω

(W (u)‖∇û‖ + β‖u‖22)dxdy

+ λ4

∫
Ω

(r − u + l)2dxdy

+ λ5

∫
Ω

log(U ) + (U0/U )dxdy, (14)

and

min
l

{E(l)} = λ0

∫
Ω

‖∇l‖22dxdy

+ λ4

∫
Ω

(r − u + l)2dxdy. (15)

These equations are to be solved iteratively to get the final
result.

2.1 Numerical implementation

There are various alternating minimization schemes for
solving the above-mentioned problem. The numerical imple-
mentation seeks for a solution which converges at a higher
rate. Given many such implementations such as alternating
method [39], projection method [40], primal-dual method
[6], and Bregman method [41], we chose the split-Bregman

solution for the reason that it provides a stable solution with a
high convergence rate and less parameter sensitivity. There-
fore, the above equations (13), (14), and (15) are solved
using the split-Bregman numerical optimization technique,
see [41] and [42] for more details. With regard to the split-
Bregman iteration (see [41]), we introduce new constraints
as a = ∇r̂ and b = ∇û along with the auxiliary variables d1
and d2, and then, equations (13) and (14) get transformed as

min
r

{E(r)} = λ1W (r)‖a‖
+ λ2(exp(r) − 1/2)2

+ λ4(r − u + l)2

+ λ‖a − ∇r̂ − d1‖22 (16)

and

min
u

{E(u)} = λ3(W (u)‖b‖ + β‖u‖22)
+ λ4(r − u + l)2

+ λ5 log(U ) + (U0/U )

+ α‖b − ∇û − d2‖22. (17)

The above equations can be further split as given below (we
assume that λ1 = 1 and λ3 = 1):

rk+1 = min
r

{
λ2(exp(r) − 1/2)2 + λ4(r − u + l)2

+ λ‖a − ∇r̂ − dk1‖22
}
, (18)

ak+1 = min
r

{
W (r)‖a‖ + λ‖a − ∇r̂ − dk1‖22

}
, (19)

uk+1 = min
u

{
λ5(log U + (U0/U )) + β‖u‖22 + λ4(r − u + l)2

+ α‖b − ∇û − dk2‖22
}
, (20)

and

bk+1 = min
u

{
W (u) ‖b‖ + α‖b − ∇û − dk2‖22

}
, (21)

The auxiliary variables d1 and d2 get updated after each cor-
responding Bregman iterations as follows:

dk+1
1 = dk1 + (∇r̂ − ak+1). (22)

and

dk+1
2 = dk2 + (∇û − bk+1). (23)

The Euler–Lagrange is applied on equation (18) and (20) to
evaluate the derivative of the functional, which is later solved
using the Fourier transform. The iterative procedure for the
restoration is given in Algorithm 1:
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Fig. 1 Restoration results of US
B-mode input a noisy input, b
SRAD, c DPAD, d OBNLM, e
NLTBV, f ADMSS, g PFDTV h
eigenfilter, i proposed method

Fig. 2 Restoration results of US
B-mode input a noisy input, b
SRAD, c DPAD, d OBNLM, e
NLTBV, f ADMSS, g PFDTV h
eigenfilter, i proposed method
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Fig. 3 Restoration results of US
B-mode input a noisy input, b
SRAD, c DPAD, d OBNLM, e
NLTBV, f ADMSS, g PFDTV, h
eigenfilter, i proposed method

3 Experimental results

For the experimental evaluation, we use theUS image dataset
provided by Signal Processing Laboratory
(http://splab.cz/en/download/) and COVID-19 US data pro-
vided in [43]. The former dataset includesB-modeUS images
of the common carotid artery (CCA). The experimental stud-
ies are conducted using MATLAB R2018b on a system
having Intel(R) Core(TM) i7-9750H CPU @2.60GHz pro-
cessor with 16GB of RAM. For comparative study, we use
the popular despeckling algorithms such as SRAD[7],DPAD
[9], OBNLM [13], NLTBV [27], ADMSS [12], PFDTV [28],
and eigenfilter [19].

The restoration results obtained for various comparative
methods are given in Figs. 1, 2, 3, 4, and 5 for a visual com-
parison. In Fig. 1, the details present on the upper portion
of the image are missing in most of the restoration results
except the proposed method. The performance shown by the
eigenfilter is comparatively better than the others; however,
the enhancement capability of the proposed algorithm super-

sedes the others. Further, the proposed model is observed
to retain small details present in the image pretty well. A
similar kind of performance is visible from Figs. 2 and 3 as
well, where the details on the upper portion of the image are
least preserved by the othermethods includingOBNLM. The
restoration results obtained using eigenfilter ([19]) appears
low in contrast and blurry in appearance, whereas the pro-
posed algorithm gives a better contrast enhancement and
denoising at the same time, which makes the model supe-
rior to the other comparative models. In Fig. 4, most of the
comparing methods except the eigenfilter did not succeed
in maintaining textures. Moreover, the details present in the
dark regions are entirely washed out in all the comparative
results. In contrast, the proposed method has promisingly
enhanced the dark regions and preserved details from being
ignored in further steps. The textures present in tissues are
also preserved in the line of denoising.A similar performance
is visible in Fig. 5 as well.

Performance comparison of a synthetic image is depicted
in Fig. 6. The noisy input is given in sub-figure (a). As
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Fig. 4 Restoration results of US
B-mode input a noisy input, b
SRAD, c DPAD, d OBNLM, e
NLTBV, f ADMSS, g PFDTV, h
eigenfilter, i proposed method

Algorithm 1 Algorithm to implement the method
Input U0 ← Noisy US image
Output Restored US image U

1: Initialize k = 1, ε = 0.0001, a1 = 0, d11 = 0, b1 = 0, d12 =
0, u1 = log(U0), l1 = max(u1), and r1 = (l1 − u1)

2: while do‖uk − uk−1‖/‖uk‖ < ε

3: ak+1 = shrinkage(∇r̂ + dk1 ,
W (r)

λ
),

where shrinkage(x, θ) = x
|x | max(|x | − θ, 0).

4: rk
1 =F

{
λ4F(u−l)−λ2F((E(r) (E(r)−1/2)))−λF(∇.(a−∇r̂−dk1 ))

λ4

}
(where E denoted exp function, k1 := k+1, andF is the inverse

Fourier transform)
5: update dk+1

1 using equation (22)

6: bk+1 = shrinkage(∇û + dk2 ,
W (u)

α
).

7: uk+1=F

{
λ5F(U0/U )−λ4F(r+l)−αF(∇.(b−∇û−dk2 ))

F((λ5/u)+β−λ4)

}
.

8: update dk+1
2 using equation (23)

9: lk+1 = F

{
λ4F(u−r)
F(λ4+λ0Δ)

}
.

10: end while
11: update U as exponential of e(l+r)

observable from the results, the presence of speckle noise
has degraded the contrast of the image as well. Most of the

diffusion-based restoring algorithms such as SRAD, DPAD,
andADMSSgive poor contrast enhancement, see sub-figures
(b), (c), and (f), respectively. The OBNLM has consider-
ably done well in maintaining the contrast, but as shown
in Fig. 6d, along with the smoothing (due to despeckling)
some artefacts are also introduced in the restored images.
Similarly, NLTBV method also restores the original con-
trast of the image to some extent. The denoising achieved
by this model in low-intensity areas is remarkable; how-
ever, in high-intensity areas, the performance is moderately
degraded. The restoration provided by eigenfilter method
is good in suppressing the noise and restoring the contrast
aspects of the data, but the resultant image appears blurred
with minimal sharp details or textures. On the contrary, the
PFDTV result gives sharp edges and details, but contrast
between the dark pixel regions like the back square and the
background is very low.Comparatively, themethod proposed
herein gives a better performance even in case of highly
corrupted data by giving a consistent performance in low-
and high-intensity regions, see sub-figure (h). The method
preserves edges and other sharp details efficiently, and the
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Fig. 5 Restoration results of US
B-mode input a noisy input, b
SRAD, c DPAD, d OBNLM, e
NLTBV, f ADMSS, g PFDTV, h
eigenfilter, i proposed method

contrast improvement achieved eventually improves the anal-
ysis of real scan-images, as it reveals the hidden details which
are otherwise unobserved. The same performance pattern is
visible in restoring a one-dimensional signal too, refer Fig.
7. Here, sub-figures (b), (c), and (f) represent the SRAD,
DPAD, and ADMSS results, respectively, where the restored
signal (Green) appears noise-free, but the amplitude or pixel
values are getting diminished in the restored data. The range
of output amplitude is also reduced to [0-50], which indi-
cates a degradation in contrast. Moreover, unlike the noisy
input signal (Red), the shifts from different pixel levels are
not sharp in the output, and the lines are mostly straight,
which indicates the poorly preserved edges and textures. The
OBNLMresult given in sub-figure (d) is not shown todegrade
the pixel values, but the denoising performance is consider-
ably low. The sub-figure (e) provides the result of NLTBV,
where the denoising of high pixel values (corresponds to
bright areas in a 2D image) is compromised. Nevertheless,
denoising of the rest of the parts appears comparatively better.
The sub-figure (g) shows the PFDTV result, where it suc-
ceeds in preserving sharp edges, but the black region is not

distinguishable from the background. The eigenfilter result
given in sub-figure (h) succeeds in removing noise; however,
texture preservation capability seems low. The output pixel
values are slightly reduced in this result, especially in high-
intensity regions. The proposed result is given in sub-figure
(h), which improves the contrast of the output by enhanc-
ing the intermediate intensity levels, which in turn makes the
darker regions bright for better visibility. As speckle noise
contains useful information, the textures in noisy input (red)
are well preserved in this result and edges are also properly
retained.

Various quality metrics are used in this study to analyse
the performance of the proposed method with different com-
paring algorithms. These metrics are chosen to evaluate the
efficiency of the system in terms of various parameters, such
as noise reduction and contrast enhancement. The equivalent
number of looks (ENL), naturalness image quality evaluator
(NIQE), entropy, global contrast factor (GCF), and contrast-
to-noise ratio (CNR) are the different quality measures used
in this study. The parameter values used for the experiments
are λ = 1.4, α = 0.2, λ0 = 0.1, λ2 = 8, λ4 = 800, λ5 =
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Fig. 6 Restoration of synthetic
noisy data (a) input image after
adding Gamma noise of
variance=0.25; (b) SRAD;
(c)DPAD; (d) OBNLM; (e)
NLTBV; (f) ADMSS; (g)
PFDTV; (h) eigenfilter; (i)
proposed method

Fig. 7 Restoration of a 1D
signal, sub-figures (b)-(h)
contains original signal (blue),
input signal after adding gamma
noise of variance=0.25 (red) and
different restored signals
(green): (a) original signal, (b)
SRAD, (c) DPAD, (d) OBNLM,
(e) NLTBV, (f) ADMSS, (g)
PFDTV, (h) eigenfilter, (i)
proposed method
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Fig. 8 Parameter analysis usingdifferent qualitymeasures (QM)Row1:
change in QM with respect to λ; Row2: change in QM with respect to
α; Row3: change in QM with respect to λ2; Row4: change in QM with

respect to λ5; Row5: change in QM with respect to λ4; Row6: change
in QM with respect to β; Row7: change in QM with respect to λ0

0.001, β = 0.2. These parameters are set based on various
experimental studies performed with different image data.
An adaptive selection of them is still an open problem that is
being investigated. The detailed analysis is conducted based
on these quality metrics to fix the parameter value which is
given in Fig. 8. Different rows in this figure represent the
influence of each parameter on the quality metrics under

study. In the first row, the effect of parameter λ is given.
The quality metrics ENL, CNR, and NIQE increase with the
increase in λ, whereas entropy and GCF decrease. Hence,
to obtain the optimal performance according to all qual-
ity measures, we have chosen λ = 1.4. Similarly, all other
parameters are also tuned based on the corresponding rows
in Fig. 8.
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Table 1 Comparison on the basis of different quality metrics

Images Quality
metrics

SRAD DPAD OBNLM NLTBV ADMSS PFDTV Eigenfilter Proposed

Fig 1 Entropy 6.7053 6.7760 6.8013 6.7480 6.3691 1.6262 6.6896 7.7073

GCF 7.6296 7.6375 7.8531 7.6382 6.8447 3.0850 6.1570 8.2439

NIQE 5.0591 4.9484 6.5769 7.2262 6.0977 16.6590 7.3484 4.0918

ENL 48.6909 47.7218 44.1535 31.9273 26.5392 24.3303 63.2070 413.3297

CNR 6.8797 6.8127 6.6179 5.5728 5.0935 2.8834 7.3992 15.8744

Fig 2 Entropy 6.607 6.6203 6.6901 6.6467 6.2703 1.2658 6.6068 7.7233

GCF 8.0282 7.8897 8.9615 7.8978 6.2703 3.3348 6.5716 8.9733

NIQE 6.9897 6.9727 5.3094 7.3019 8.8407 15.6634 8.0066 5.2590

ENL 22.9210 22.3363 21.3240 17.0062 15.2761 40.2538 22.0371 268.8701

CNR 4.7324 4.6716 4.5630 4.0870 3.8647 4.5501 4.4238 14.0828

Fig 3 Entropy 5.0950 5.0981 4.4555 5.3408 5.2410 1.5188 5.3604 5.6627

GCF 8.0922 8.1033 7.0739 8.5077 8.3438 3.8821 5.8713 9.8235

NIQE 6.6294 6.6699 8.2822 8.9055 7.3673 15.5489 9.5555 6.7498

ENL 42.7824 42.8157 32.6069 39.6929 40.1287 66.0088 43.2062 595.0250

CNR 6.5194 6.5220 5.6633 6.2646 6.2751 5.5931 6.1064 22.1321

Fig 4 Entropy 6.7223 6.6715 6.4768 6.4797 6.7241 1.6262 6.6536 7.4023

GCF 4.5598 4.4529 4.2579 4.2138 4.6504 3.0850 4.4459 5.5173

NIQE 6.9290 7.1021 9.5777 7.6104 7.8841 16.6590 7.7821 4.3855

ENL 44.0601 45.3382 41.4975 33.9527 36.2639 24.3303 37.2806 276.1611

CNR 6.1145 6.2041 5.8344 5.3978 5.6884 2.8834 5.5713 11.0352

Fig 5 Entropy 6.1223 6.6715 6.4768 6.4797 6.7241 1.2658 7.0827 7.7728

GCF 5.6499 5.6180 4.7530 5.2411 5.3850 3.3348 5.5811 6.8228

NIQE 6.3683 6.5479 6.4120 5.6950 6.9847 15.6634 7.4589 4.3522

ENL 142.2614 149.9590 135.3227 91.7814 60.1468 40.2538 89.5017 224.6325

CNR 9.8087 10.0929 9.4622 8.0689 6.7509 4.5501 7.9048 10.0929

Fig 6 Entropy 4.1336 4.2793 5.1965 5.1911 2.6869 1.0897 4.9742 5.2165

GCF 2.0018 2.4236 3.0760 3.2872 2.0476 2.2727 3.2037 3.3425

NIQE 13.6653 11.9839 11.9111 11.4323 12.5979 16.2904 10.9111 10.1669

ENL 6.7124 1.8462 3.1425 0.0182 0.1478 8.1641 4.0676 11.6226

CNR 4.0485 4.1890 4.1906 3.9588 4.3583 3.5577 9.6888 11.4692

The ENL is a well-known blind quality metric (the
measure which does not demand the original data for its
computation) used to evaluate the performance of despeck-
ling filters [44]. The higher value of ENL indicates a better
speckle removing capability. We have evaluated the same for
different region of interests (ROI). The ENL value obtained
for one particular ROI is given in Table 1. The methods such
as eigenfilter, PFDTV, and DPAD give comparatively good
ENL values than the other diffusion and variational methods
used for the comparison. However, the ENLmetric evaluated
for the proposed method is considerably higher for all input
images. The NIQE [45] is another widely used blind quality
evaluator. It is based on a natural scene statistical model, a
low value of which indicates less distortion due to noise or
any other sources. In general, NIQE is efficient in detecting
distortions present in an image. As per the tabulated NIQE

values in Table 1, we notice that the comparing methods
like OBNLM, DPAD, and NLTBV are giving less distorted
results than other recentmethods. Nevertheless, the proposed
method is giving a comparatively lower NIQE values in all
the test cases, which indicates restoring ability of the model.

Other than denoising capability, the detail-preserving abil-
ity is also evaluated using the metric: entropy [46]. A high
entropy indicates an increased amount of details present in
an image. The comparing methods like OBNLM, NLTBV,
and eigenfilter are giving a slightly higher performance in
detail preservation. In case of the proposed method, the tab-
ulated entropy values are higher than the comparing ones
for all the test images, which implies that the illumination
correction along with restoration is useful to preserve small
hidden details. We have also used the GCF [47] for studying
the contrast improvement. As we can infer from the Table
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1, the contrast measure obtained by OBNLM is close to the
proposed method in some test cases, but the details present
in this image are categorically compromised. However, the
proposedmethod shows a consistent global contrast improve-
ment in all the test cases.

The CNR [48] is similar to signal-to-noise ratio (SNR),
and it is used to evaluate the quality of restoration. A high
CNRvalue indicates better denoising and a contrast enhance-
ment.We have evaluated the same on different ROIs, and one
such result is included in Table 1. This tabulated value also
supports the superior restoration capability of the proposed
method. Moreover, the average execution time taken by this
method for 500 × 500 image is 6.537 s, which supports the
use of this algorithm on real-time data.

4 Conclusion

Aweberized non-local TBV Retinex-based restoration algo-
rithm for despeckling has been proposed in this paper, which
does the denoising along with contrast enhancement and
illumination correction. The use of weighted and weberized
non-local TV and TBV norms aids in retaining fine textures
and improving the visual contrast. The visual and quantita-
tive evaluation conducted here votes for the better denoising
and detail-preserving capacity of the proposed algorithm in
addition to its contrast enhancement ability. The time taken
for the execution is in seconds, which makes it suitable for
real-time applications. The adaptive parameter selection for
getting the optimal result is an open problem, and this is a
problem to be investigated in forthcoming research paper.
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