Skip to main content
Log in

The image compression–encryption algorithm based on the compression sensing and fractional-order chaotic system

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a novel image encryption algorithm based on the fractional-order chaotic system and compression sensing algorithm is proposed. Firstly, the dynamical characteristics of the fractional-order chaotic system are analyzed. The hardware circuit is designed in and realized on the DSP. Secondly, the block feedback diffusion algorithm is applied to this encryption scheme. The elements of the cipher block are decided by the front of the cipher block and the plain-text block. In this algorithm, it needs to be emphasized that the scrambling calculation and the diffusion operation are carried out simultaneously. The simulation results show that the algorithm can effectively encrypt digital images. Finally, the security analysis demonstrates the security and the effectiveness of the proposed encryption algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  2. Aqeelurrehman, L.X., Hahsmi, M.A., Haider, R.: An efficient mixed inter-intra pixels substitution at 2bits-level for image encryption technique using dna and chaos. Optik 153, 117–134 (2018)

    Article  Google Scholar 

  3. Belazi, A., El-Latif, A.A.A., Belghith, S.: A novel image encryption scheme based on substitution-permutation network and chaos. Sig. Process. 128, 155–170 (2016)

    Article  Google Scholar 

  4. Cao, C., Sun, K., Liu, W.: A novel bit-level image encryption algorithm based on 2d-licm hyperchaotic map. Sig. Process. 143, 122–133 (2018). https://doi.org/10.1016/j.sigpro.2017.08.020

    Article  Google Scholar 

  5. Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using dna sequence operations. Opt. Lasers Eng. (2017a). (88(Complete):197–213)

  6. Chai, X., Gan, Z., Lu, Y., Chen, Y., Han, D.: A novel image encryption algorithm based on the chaotic system and dna computing. Int. J. Mod. Phys. C 28(05), 1750069 (2017b)

    Article  MathSciNet  Google Scholar 

  7. Chai, X., Zheng, X., Gan, Z., Han, D., Chen, Y.: An image encryption algorithm based on chaotic system and compressive sensing. Sig. Process. 148, 124–144 (2018). https://doi.org/10.1016/j.sigpro.2018.02.007

    Article  Google Scholar 

  8. Chai, X., Wu, H., Gan, Z., Zhang, Y., Chen, Y.: Hiding cipher-images generated by 2-d compressive sensing with a multi-embedding strategy. Sig. Process. (2020). https://doi.org/10.1016/j.sigpro.2020.107525

    Article  Google Scholar 

  9. Chen, C., Sun, K., He, S.: A class of higher-dimensional hyperchaotic maps. Eur. Phys. J. Plus (2019). https://doi.org/10.1140/epjp/i2019-12776-9

    Article  Google Scholar 

  10. Chen, C., Sun, K., He, S.: An improved image encryption algorithm with finite computing precision. Sig. Process. (2019b). https://doi.org/10.1016/j.sigpro.2019.107340

    Article  Google Scholar 

  11. Chen, L.P., Yin, H., Yuan, L.G., Lopes, A.M., Machado, J.T., Wu, R.C.: A novel color image encryption algorithm based on a fractional-order discrete chaotic neural network and dna sequence operations. Front. Inf. Technol. Electron. Eng. 21(6), 866–879 (2020)

    Article  Google Scholar 

  12. Gan, Z., Chai, X.L., Han, D.J., Chen, Y.R.: A chaotic image encryption algorithm based on 3-d bit-plane permutation. Neural Comput. Appl. 31(11), 7111–7130 (2018). https://doi.org/10.1007/s00521-018-3541-y

    Article  Google Scholar 

  13. Gong, L., Deng, C., Pan, S., Zhou, N.: Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Opt. Laser Technol. 103, 48–58 (2018). https://doi.org/10.1016/j.optlastec.2018.01.007

    Article  Google Scholar 

  14. Gong, L., Qiu, K., Deng, C., Zhou, N.: An optical image compression and encryption scheme based on compressive sensing and rsa algorithm. Opt. Lasers Eng. 121, 169–180 (2019). https://doi.org/10.1016/j.optlaseng.2019.03.006

    Article  Google Scholar 

  15. He, S., Sun, K., Banerjee, S.: Dynamical properties and complexity in fractional-order diffusionless Lorenz system. Eur. Phys. J. Plus 131(8), 254 (2016)

    Article  Google Scholar 

  16. He, S., Sun, K., Mei, X., Yan, B., Xu, S.: Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur. Phys. J. Plus (2017a). https://doi.org/10.1140/epjp/i2017-11306-3

    Article  Google Scholar 

  17. He, S., Sun, K., Wang, H., Mei, X., Sun, Y.: Generalized synchronization of fractional-order hyperchaotic systems and its dsp implementation. Nonlinear Dyn. 92(1), 85–96 (2017b). https://doi.org/10.1007/s11071-017-3907-1

    Article  Google Scholar 

  18. Hua, Z., Zhou, Y.: Image encryption using 2d logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016). https://doi.org/10.1016/j.ins.2016.01.017

    Article  Google Scholar 

  19. Jin, X., Wu, Z., Song, C., Zhang, C., Li, X.: 3d point cloud encryption through chaotic mapping. In: Pacific Rim Conference on Multimedia, pp. 119–129. Springer (2016)

  20. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  21. Li, G., Wang, L.I.: Double chaotic image encryption algorithm based on optimal sequence solution and fractional transform. Vis. Comput. 35(9), 1267–1277 (2019)

    Article  Google Scholar 

  22. Li, P., Xu, J., Mou, J., Yang, F.: Fractional-order 4d hyperchaotic memristive system and application in color image encryption. Eur. J. Image Video Process. 1, 22 (2019)

    Google Scholar 

  23. Liu, W., Sun, K., He, S.: Sf-simm high-dimensional hyperchaotic map and its performance analysis. Nonlinear Dyn. 89, 2521–2532 (2017a)

    Article  MathSciNet  Google Scholar 

  24. Liu, W., Sun, K., He, Y., Yu, M.: Color image encryption using three-dimensional sine icmic modulation map and dna sequence operations. Int. J. Bifurcat. Chaos 27(11), 1750171 (2017b)

    Article  Google Scholar 

  25. Ma, C., Jun, M., Cao, Y., Liu, T., Wang, J.: Multistability analysis of a conformable fractional-order chaotic system. Phys. Scr. 95(7), (2020)

  26. Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 8(8), 29–41 (1989)

    Article  MathSciNet  Google Scholar 

  27. Millerioux, G., Amigo, J.M., Daafouz, J.: A connection between chaotic and conventional cryptography. IEEE Trans. Circuits Syst. Regul. Pap. 55(6), 1695–1703 (2008)

    Article  MathSciNet  Google Scholar 

  28. Mohimani, G.H., Babaie-Zadeh, M., Jutten, C.: Fast sparse representation based on smoothed l0 norm. In: International Conference on Independent Component Analysis and Signal Separation, pp 389–396. Springer (2007)

  29. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans. Signal Process. 57(1), 289–301 (2008)

    Article  Google Scholar 

  30. Mou, J., Yang, F., Chu, R., Cao, Y.: Image compression and encryption algorithm based on hyper-chaotic map. Mobile Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01293-9

    Article  Google Scholar 

  31. Peng, D., Sun, K.H., Alamodi, A.O.A.: Dynamics analysis of fractional-order permanent magnet synchronous motor and its dsp implementation. Int. J. Mod. Phys. B (2019a). https://doi.org/10.1142/s0217979219500310

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng, Y., Sun, K., He, S., Peng, D.: Parameter identification of fractional-order discrete chaotic systems. Entropy 21(1), 27 (2019b)

    Article  Google Scholar 

  33. Rey, A.M.D.: A method to encrypt 3d solid objects based on three-dimensional cellular automata. In: Hybrid Artificial Intelligence Systems, pp. 427–438 (2015)

  34. Sayed, W.S., Radwan, A.G.: Generalized switched synchronization and dependent image encryption using dynamically rotating fractional-order chaotic systems. AEU Int. J. Electron. Commun. 123, (2020)

    Article  Google Scholar 

  35. Talhaoui, M.Z., Wang, X., Midoun, M.A.: A new one-dimensional cosine polynomial chaotic map and its use in image encryption. Vis, Comput (2020a)

    Google Scholar 

  36. Talhaoui, M.Z., Wang, X., Talhaoui, A.: A new one-dimensional chaotic map and its application in a novel permutation-less image encryption scheme. Vis, Comput (2020b)

    Google Scholar 

  37. Wang, X., Xu, M., Li, Y.: Fast encryption scheme for 3d models based on chaos system. Multimed. Tools Appl. 78(23), 33865–33884 (2019)

    Article  Google Scholar 

  38. Xu, Q., Sun, K., Cao, C., Zhu, C.: A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt. Lasers Eng. 121, 203–214 (2019). https://doi.org/10.1016/j.optlaseng.2019.04.011

    Article  Google Scholar 

  39. Yang, F., Mou, J., Luo, C., Cao, Y.: An improved color image encryption scheme and cryptanalysis based on hyperchaotic sequence. Phys. Scr. 94 (2019a)

  40. Yang, F., Mou, J., Sun, K., Cao, Y., Jin, J.: Color image compression-encryption algorithm based on fractional-order memristor chaotic circuit. IEEE Access (2019b). https://doi.org/10.1109/ACCESS.2019.2914722

    Article  Google Scholar 

  41. Yang, F., Mou, J., Liu, J., Ma, C., Yan, H.: Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 169, (2020)

    Article  Google Scholar 

  42. Yu, S.S., Zhou, N.R., Gong, L.H., Nie, Z.: Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Opt. Lasers Eng. (2020). https://doi.org/10.1016/j.optlaseng.2019.105816

    Article  Google Scholar 

  43. Zhang, L.M., Sun, K.H., Liu, W.H., He, S.B.: A novel color image encryption scheme using fractional-order hyperchaotic system and dna sequence operations. Chin. Phys. B 26, 10 (2017)

    Google Scholar 

  44. Zhongyun, H., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  45. Zhou, S., Wei, Z., Wang, B., Zheng, X., Zhou, C., Zhang, Q.: Encryption method based on a new secret key algorithm for color images. AEU Int. J. Electron. Commun. 70(1), 1–7 (2016)

    Article  Google Scholar 

  46. Zhu, C., Gan, Z., Lu, Y., Chai, X.: An image encryption algorithm based on 3-d dna level permutation and substitution scheme. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08226-4

    Article  Google Scholar 

Download references

Acknowledgements

This subject is supported by the Natural Science Foundation of Liaoning Province (2020-MS-274) and the National Nature Science Foundation of China (No.61773010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mou.

Ethics declarations

Conflict of interest

No conflicts of interests in the publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Natural Science Foundation of Liaoning Province (2020-MS-274) and the National Nature Science Foundation of China (No. 61773010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Mou, J., Liu, J. et al. The image compression–encryption algorithm based on the compression sensing and fractional-order chaotic system. Vis Comput 38, 1509–1526 (2022). https://doi.org/10.1007/s00371-021-02085-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02085-7

Keywords

Navigation