Skip to main content
Log in

A light iris segmentation network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Iris segmentation plays a vital role in the iris recognition system. However, it faces many challenges in non-ideal situations. To improve the iris segmentation performance for possible mobile devices, this paper presents a light iris segmentation method based on fully convolutional network. Firstly, a lightweight fully convolutional iris segmentation network is developed. Secondly, we adopt weighted loss, multi-level feature dense fusion module, multi-supervised training of multi-scale image and generative adversarial network to improve the segmentation performance. The final model is 6.21 M. Experiments show that the proposed method achieves 99.30% PA, 95.35% mIoU on UBIRIS.v2 and 99.66% PA, 96.75% mIoU on CASIA-Iris-Thousand database, which is relatively encouraging for a light iris segmentation network. It takes 41.56 ms and 63.03 ms to segment an image of UBIRIS.v2 and CASIA-Iris-Thousand databases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J.: A machine-vision system for iris recognition. Mach. Vis. Appl. 9(1), 1–8 (1996)

    Article  Google Scholar 

  2. Umer, S., Dhara, B.C., Chanda, B.: Nir and vw iris image recognition using ensemble of patch statistics features. Vis .Comput. 35(9), 1327–1344 (2018)

  3. Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)

    Article  Google Scholar 

  4. Rahulkar, A.D., Holambe, R.S.: Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter banks. Neurocomputing 81, 12–23 (2012)

    Article  Google Scholar 

  5. Zhao, Z., Kumar, A.: An Accurate Iris Segmentation Framework Under Relaxed Imaging Constraints Using Total Variation Model. In: IEEE International Conference on Computer Vision (2016)

  6. Daugman, J.: High confidence recognition of persons by rapid video analysis of iris texture. In: European Convention on Security Detection (2002)

  7. Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J., Matey, J.R., Mcbride, S.E.: A machine-vision system for iris recognition. Mach. Vis. Appl. 9(1), 1–8 (1996)

    Article  Google Scholar 

  8. Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J., Matey, J.R., Mcbride, S.E.: System for automated iris recognition. In: IEEE Workshop on Applications of Computer Vision (2002)

  9. Fukushima, K.: Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1(2), 119–130 (1988)

    Article  Google Scholar 

  10. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (2014)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems (2012)

  12. Agrawal, A., Mittal, N.: Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Vis. Comput. 17, 56 (2019)

    Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  14. Wang, B., Chen, S., Wang, J., Hu, X.: Residual feature pyramid networks for salient object detection. Vis. Comput. 11, 35 (2019)

    Google Scholar 

  15. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2016)

    Article  Google Scholar 

  16. Wang, D., Hu, G., Lyu, C.: Frnet: an end-to-end feature refinement neural network for medical image segmentation. Vis. Comput. 8, 22 (2020)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Google Scholar 

  18. Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)

    Article  Google Scholar 

  19. Bazrafkan, S., Thavalengal, S., Corcoran, P.: An End to End Deep Neural Network for Iris Segmentation in Unconstraint Scenarios. Neural Netw. (2017)

  20. Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  21. Arsalan, M., Hong, H.G., Naqvi, R.A., Lee, M.B., Kim, M.C., Kim, D.S., Kim, C.S., Park, K.R.: Deep learning-based iris segmentation for iris recognition in visible light environment. Symmetry 9(11), 253 (2017)

    Article  Google Scholar 

  22. Liu, N., Li, H., Man, Z., Jing, L., Tan, T.: Accurate iris segmentation in non-cooperative environments using fully convolutional networks. In: International Conference on Biometrics (2016)

  23. Feng, C., Sun, Y., Li, X.: Iris r-CNN: Accurate Iris Segmentation in Non-cooperative Environment (2019). arXiv:1903.10140

  24. Arsalan, M., Naqvi, R.A., Kim, D.S., Nguyen, H.: Park: Irisdensenet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors. Sensors 18(5), 256 (2018)

    Article  Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep rEsidual Learning for Image Recognition. Comput. Vision Pattern Recog. (2015)

  26. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: International Conference on Computer Vision (2011)

  27. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (2016)

  28. Yu, F., Koltun, V.: Multi-scale Context Aggregation by Dilated Convolutions. In: International Conference on Learning Representations (2016)

  29. Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., Wang, F.Y.: Generative adversarial networks. J. Autom. 17, 598 (2017)

    Google Scholar 

  30. Proena, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The ubiris.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)

    Article  Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The 3rd International Conference for Learning Representations, San Diego. arXiv:1412.6980

  32. Arsalan, M., Kim, D.S., Lee, M.B., Owais, M., Park, K.R.: Fred-net: Fully Residual Encoder–decoder Network for Accurate Iris Segmentation. Expert Syst. Appl. (2019)

  33. Jaswal, G., Aditya, N., Jha, R.R., Gupta, D., Saini, S.: Pixisegnet: Pixel Level Iris Segmentation Network Using Convolutional Encoder–decoder with Stacked Hourglass Bottleneck. IET Biomet. (2019)

  34. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

  35. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: European Conference on Computer Vision (2018)

  36. Poudel, R.P.K., Liwicki, S., Cipolla, R.: Fast-scnn: Fast Semantic Segmentation Network (2019). arXiv:1902.04502

Download references

Acknowledgements

The authors would like to thank “National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA)” for their great contributions in building and providing iris image databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangde Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundations of China, No. 61703088, the Doctoral Scientific Research Foundation of Liaoning Province, No.20170520326 and “the Fundamental Research Funds for the Central Universities”, N2105009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Meng, X., Sun, T. et al. A light iris segmentation network. Vis Comput 38, 2591–2601 (2022). https://doi.org/10.1007/s00371-021-02134-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02134-1

Keywords

Navigation