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Abstract Floorplans are commonly used to repre-

sent the layout of buildings. In computer aided-design

(CAD) floorplans are usually represented in the form of

hierarchical graph structures. Research works towards

computational techniques that facilitate the design pro-

cess, such as automated analysis and optimization, of-

ten use simple floorplan representations that ignore the

semantics of the space and do not take into account

usage related analytics.

We present a floorplan embedding technique that

uses an attributed graph to represent the geometric in-

formation as well as design semantics and behavioral

features of the inhabitants as node and edge attributes.

A Long Short-Term Memory (LSTM) Variational Au-

toencoder (VAE) architecture is proposed and trained

to embed attributed graphs as vectors in a continuous

space. A user study is conducted to evaluate the cou-

pling of similar floorplans retrieved from the embed-

ding space with respect to a given input (e.g., design
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layout). The qualitative, quantitative and user-study

evaluations show that our embedding framework pro-

duces meaningful and accurate vector representations

for floorplans. In addition, our proposed model is a gen-

erative model. We studied and showcased its effective-

ness for generating new floorplans. We also release the

dataset that we have constructed and which, for each

floorplan, includes the design semantics attributes as

well as simulation generated human behavioral features

for further study in the community.

Keywords Floorplan Representation, Floorplan Gen-

eration, LSTM Variational Autoencoder, Attributed

Graph, Design Semantic Features, Human Behavioral

Features.

1 Introduction

Floorplan representations support a set of fundamental

activities in the architectural design process, such as the

ideation and development of new designs, their anal-

ysis and evaluation with respect to any selected per-

formance criteria, and the communication among the

stakeholders. While Computer-Aided Design (CAD)

and Building Information Modeling (BIM) approaches

support the creation of digital building models from

which floorplans can be extracted, these methods do

not support the systematic representation or compari-

son of floorplan features, which could be derived from

geometric and semantic properties, as well as more ad-

vanced performance metrics, such as space utilization

and occupant behaviors [27,11].

We propose a novel technique for floorplan represen-

tation that uses a Long Short-Term Memory (LSTM)

Variational Autoencoder (VAE) with attributed graphs

as intermediate representations. This method considers
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not only the design semantics and high-level structural

characteristics but also crowd behavioral attributes of

potential human-building interactions. This approach

represents floorplans with numerical vectors in which

design semantics and human behavioral features are en-

coded. These vectors facilitate providing different appli-

cations related to floorplans, such as recommendation

systems, real-time evaluation of designs, fast retrieval

of similar floorplans and any application which needs to

cluster floorplans. The qualitative and quantitative re-

sults show the performance of our model for generating

representative embedding vectors such that the consid-

ered features are encoded accurately. A user-study is

also conducted to validate floorplan retrievals from em-

bedding spaces with respect to their similarity with the

input floorplans. Floorplan generation is an active area

of research in computer graphics. Recently floorplan

generation methods based on machine learning have

been integrated in design workflows to facilitate and

enhance the design process, [17,7,47]. ALthought floor-

plan generation is not the primary goal our approach,

the proposed model is a generative one and as such

it can automatically generate floor plans with desired

characteristics, as demonstrated by our experiments.

1.1 Contributions

Our contributions can be summarized as follow: (i) a

workflow to represent floorplans as attributed graphs,

augmented with design semantic and crowd behavioral

features generated by running crowd simulations, (ii) a

novel unsupervised generative deep-learning model to

learn a meaningful vector representation of floorplans

using LSTM Variational Autoencoder, (iii) generation

of new floorplans using the proposed model, and (iv) a

user study to evaluate the qualitative performance of

our approach, and (v) provision of a publicly released

dataset of floorplans of indoor environments which are

augmented with semantic and behavioral features. The

design semantic features are extracted by our auto-

mated tool and the human behavioral features are gen-

erated by hours of running simulation.

2 Related work

Our work relates to research in two areas: Floorplan

Representation and Floorplan Generation.

2.1 Floorplan representation

Floorplan representation aims for representing floor-

plans with numerical vectors that their structure, as

well as their features, are encoded in these vectors.

To the best of our knowledge, representing floorplans

by numerical vectors are not done to date. There are

some prior works for retrieving similar floorplans with

representing floorplans as images or graphs. They can

be mainly divided into three categories: image-based,

graph-based and symbol-spotting methods.

2.1.1 Image-based methods

Several approaches based on conventional image pro-

cessing techniques for comparing floorplans are pro-

posed. In these approaches, floorplans are repre-

sented as images and Histogram of Oriented Gradi-

ents(HOG) [8], Bag of Features(BOF) [23], Local Bi-

nary Pattern(LBP) [1] and Run-Length Histogram [14]

have been utilized for extracting features from these im-

ages. Then, these extracted features are used for com-

parison and retrieving floorplans. By emerging Convo-

lutional Neural Networks (CNN), In [38] a deep CNN

is presented for feature extraction to address the limi-

tation of conventional image processing techniques for

extracting features. These method suits object-centric

floorplans datasets in which floorplans are annotated

with furniture or specific visual symbols. However,

these features are not semantics and do not correctly

capture the high-level design structures. Moreover, hu-

man behavioral features are not considered in these

methods, whereas occupants’ behaviours (i.e., trajecto-

ries) are often highly correlated with environments [42].

2.1.2 Graph-based methods

In this category, floorplans are represented with graphs

and graph matching methods are utilized for measuring

their similarity. Different strategies are used for repre-

senting floorplans as a graph. In [37] rooms are nodes,

and edges capture the adjacency between the rooms.

In addition, nodes are augmented with furniture types

annotated in floorplans. In [36], the graphs are aug-

mented with more attributes like room area and furni-

ture style in three different representation layers. Since

in these works, floorplans are represented with graphs,

all of them capture the floorplans structure, and some

of them add attributes to nodes. However, mostly they

do not include semantic and high-level features as well

as human behavioral features. Moreover, all of these

methods use graphs as a final representation and do not

provide numerical vectors. These methods use graph

matching methods for finding similarity, which directly

applied over graphs.
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Fig. 1 An overview of the proposed approach. (a) floorplan is firstly converted to an attributed graph as immediate
representation, with attributes residing on both nodes and edges; (b) random walk is applied to the attributed graph to
generate a set of node sequences and edge sequences; (c) floorplan embedding vector is learned with a novel parallel LSTM
VAE model; (d) the learned floorplan embedding vector can be used for visualization and many other downstream tasks.

2.1.3 Symbol-Spotting methods

Symbol spotting is a special case of Content-based Im-

age Retrieval (CBIR) [15,33] which is used for docu-

ment analysis. By giving a query, system retrieves zones

from the documents which are likely to contain the

query. Queries could be a cropped or hand-sketched

image. Pattern recognition techniques are used in sym-

bol spotting methods like moment invariants such as

Zernike moments in [22]. Reducing search space in sym-

bols spotting methods is proposed based on hashing of

shape descriptors of graph paths (Hamiltonian paths)

in [9]. SIFT/SURF [46] features being efficient and

scale-invariant are commonly used for spotting symbols

in graphical documents. Symbol spotting methods are

applied to small datasets which do not have complex

images, and they are only applicable for retrieval pur-

pose.

2.2 Floorplan generation

Floorplan generation aims for generating floorplan de-

signs automatically by satisfying some constraints like

room sizes and adjacency between rooms. We can divide

them into two groups: Procedural/Optimization-based

methods, and recently deep learning methods.

2.2.1 Procedural/Optimization-based methods

In these methods, the constraints are manually de-

fined, and optimization methods are used for constraint

satisfaction to generate new floorplans. In [27], they

used bayesian network to learn synthesizing floorplans

with given high-level requirements. In [35,34] they pro-

posed an enhanced Evolutionary Strategy (ES) with a

Stochastic Hill Climbing (SHC) technique for floorplan

generation.

2.2.2 Deep Learning methods

In [47] a deep network was proposed for converting a

given floorplan layout as input to a floorplan with pre-

dicting rooms and walls location. In [7] they proposed

a method comprising of three deep network models to

generate floorplans. In the first step, the model gener-

ates the layout, then room locations and finally, furni-

ture locations. In this model, users are in loop, and they

can modify the input for the next steps. In [17] they pro-

posed a framework based on deep generative network.

Users specify some properties like room count, and their

model converts a layout graph, along with a building

boundary, into a floorplan. A graph-constrained gener-

ative adversarial network is proposed in [30]. They took

an architectural constraint as a graph (i.e., the number

and types) and produced a set of axis-aligned bounding

boxes of rooms.

2.3 Comparison to prior work

Previous works do not represent floorplans with numer-

ical vectors. They usually overlooked the design seman-

tic and human behavioral features. In this paper, we are
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presenting floorplans with numerical vectors, encoded

with design semantic and human behavioral features,

and room directions. In addition, we also utilize gener-

ative models for addressing floorplan generation at the

same time.

The proposed method is an extension of a recent

approach [2] with the following notable extensions:

– A novel LSTM Variational Autoencoder with two

branches for representing attributed graphs with

features on both nodes and edges with numerical

vectors. In addition, we also include rooms’ direc-

tions as edge attributes to maintain layout symme-

try.

– We study and showcase the generative power of our

model for generating new floorplans.

– We conducted a user study to evaluate the qualita-

tive performance of our embedding approach.

We believe these extensions significantly expand upon

the previous conference paper and merit consideration

for the journal.

3 The proposed framework

Fig. 1 illustrates the proposed framework, comprising of

two components. The first component represents floor-

plans with graphs. The nodes and edges of these graphs

are augmented with design semantic and human be-

havioral features. The second component embeds at-

tributed graphs in a continuous space. The details are
provided in the following sections.

3.1 Floorplan dataset

We used the houseExpo dataset [24] that includes

35, 357 2D floorplan layouts in JavaScript Object No-

tation format. There are 25 room types in this dataset

where some of them share similar semantic labels (e.g.

toilet and bathroom or terrace and balcony). We re-

duced the types to 10, including unknown types. This

reduction is done by removing less common types based

on reported statistical metrics in the dataset (e.g.

freight elevator) and considering a unique type for simi-

lar propose components. The final room types are Bed-

room, Bathroom, Office, Garage, Dining Room, Living

Room, Kitchen, Hall, Hallway and Unknown. Unknown

type is considered for room segments with a noisy la-

bel. Additionally, we remove from the set the floorplans

with inaccurate or missing labels. At the end of this

process, we obtain 8, 729 floorplan layouts. This pre-

processing is done to make the dataset solid for train-

ing. Corrupted data will decrease the training accuracy

and, consequently, the test accuracy with undesirable

outcomes of misleading the model.

3.1.1 houseExpo++ dataset

The original houseExpo dataset includes 35, 126 2D

floorplans. For each floorplan, the number of rooms,

bounding box of the whole floorplan, a list of vertices

and a dictionary of room categories, as well as their

bounding boxes are provided [24]. While we can use

the provided bounding boxes of the rooms for segmen-

tation, these bounding boxes are not accurate, so we

use them only for labeling. We compile these floor-

plans (in JSON format) to images. Then, we segment

the images to find the rooms, their connections if there

are any, the direction of connections and their square

footage. The provided bounding boxes in the origi-

nal dataset are used for assigning labels to room seg-

ments by the criterion of maximum overlapping. The

described processes are done with our automated tool

by image processing techniques. Moreover, we convert

these JSON-formated floorplans to files in a readable

format with our 3D crowd simulator (SteerSuite), and

by running simulations, we record the human behav-

ior features (features are provided in Table 1). We

call this augmented dataset as houseExpo++ that is

publicly available at: https://github.com/VahidAz/

Floorplan_dataset. Since not all floorplans have ac-

curate labels, we prune them and use 8, 729 floorplans

for training and experiments (please refer to section 3.1

for more details).

3.2 Floorplans to attributed graphs

After pruning the dataset, we represent each floorplan

with a graph. The rooms compose nodes, and the edges

are their connectivity if there is an immediate door be-

tween the room pairs. For this conversion, we compiled

houseExpo samples as images. Then we utilized a series

of image processing techniques for room segmentation

and finding their connectivity. Graph structure resem-

bles the structure of floorplans like the number of rooms

and their connectivity. However, considering floorplan

structure is necessary but not enough. In order to have

a better and more meaningful representation, we need

to integrate high-level design semantic features. More-

over, humans are the inhabitant of these buildings, and

their interaction with the environment provides valu-

able implicit information. Integration of how they in-

teract with environments is necessary in term of safety

https://github.com/VahidAz/Floorplan_dataset
https://github.com/VahidAz/Floorplan_dataset


Graph-Based Generative Representation Learning of Semantically and Behaviorally Augmented Floorplans 5

Table 1 Features on nodes and edges.

Feature
Classes

Feature
Types

Dimension

Node
Features

Design
Semantic

Square Footage
Room types

1
10

Behavioral

Not completed agents
Max evacuation time
Min evacuation time

Exit flow rate
Completed agents

Max traveled distance
Avg evacuation time
Avg traveled distance
Min traveled distance

1
1
1
1
1
1
1
1
1

Edge
Feature

Design
Semantic

Direction 4

or other type of design metrics like visibility and acces-

sibility. Therefore, we augmented the graphs with both

high-level design semantic features and human behav-

ioral features. The nodes are augmented with both de-

sign semantic and human behavioral features and the

edges only with design semantic features (Table 1).

The design semantic features include room type,

square footage and the connection direction. The room

types represented with a 10 dimensional one-hot vec-

tor where roomTypei(i) = 1 if the type is ith type

and other entities are zero. The square footage repre-

sented with a scalar value and direction of connection

with a 4 dimensional one-hot vector. We considered four

main directions: North, East, South and West. Thus,

directioni(i) = 1 if direction belongs to ith direction

and other entities are zero. The room types are pro-

vided as a label in dataset and both square footage and

direction of connection are extracted by image process-

ing techniques. Note that since we are not given the

cardinal directions, we considered the top left corner of

floorplan images as origin. Hence, the +y axis points

to north, and other directions are considered relatively.

In addition, the direction between rooms are bidirec-

tional and for simplicity we considered the direction

from node (i.e., room) with the highest degree (room

with more connections) to node with low degree. It is

because usually the node (i.e., room) with the highest

degree is the main room in the floorplan like the living

room or hallway. The room type and square footage is

specific to each room and we consider them as node fea-

tures. Since the direction of the connection is a shared

property between room pairs, we add it to the edge

features (edge between room pairs).

The human behavioral features are generated by

simulation (Fig. 2). They include metrics regarding

evacuation time, traveled distance, flow rate and the

number of successful/unsuccessful agents to exit from

the corresponding building (Table 1). To generate these

behavioral features, we converted 2D floorplans to 3D

models loadable in a crowd simulator, SteerSuite [41].

The simulator automatically populates virtual agents

in each room with the target to exit the floorplan and

features are calculated. All features in this class are

presented with one scalar value with total dimension

9. These features are generated for each room, hence

we added them to the nodes feature vector. At the end

of this step, each floorplan is represented with an at-

tributed graph G = (V,E) in which V denotes its ver-

tex set (room segments) and E ⊆ V × V denotes its

edges (connectivity between room pairs). Each node v

has a 20 dimensional feature vector Fv and each edge e

has a 4 dimensional feature vector Fe.

Fig. 2 Crowd simulations are used to compute behavioral
features for the floorplans.

3.3 Floorplan embedding

We convert the floorplans to attributed graphs with fea-

tures on both nodes and edges (Sec. 3.2). These graphs

represent floorplan geometry as well as their design

semantics and behavioral features. They can be used

directly for floorplan representation. However, graph

analysis is expensive in term of computation and space

cost. This challenge is addressed by proposing efficient

methods for graph analysis like [21,25,12] but yet they

are not enough efficient and these methods do not repre-

sent graphs with a compact numerical vector. Another

solution for addressing the complexity of graph anal-

ysis is graph embedding. Graph embedding maps the

graphs to a low dimensional space while their proper-

ties and information are maximally preserved. In this

low dimensional space the graphs with similar prop-

erties are close. We have different type of graphs like

heterogeneous graph, homogeneous graph, attributed

graph and etc. It means the input for graph embed-

ding methods are varying and a single method can not

handle all types. Moreover, graphs can be labeled or
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unlabeled. Graph embedding can mainly be divided to

node embedding, edge embedding, hybrid embedding

and whole-graph embedding [6].

In this paper, we are dealing with whole attributed

graph embedding. It is because we want to represent

each attributed graph (attributed floorplan) with a vec-

tor, and attributes present both on nodes and edges.

These vectors encode graph (floorplan) structure as well

as their design semantics and behavioral features. In ad-

dition, these graphs are unlabeled, i.e., we do not have

label for each graph to perform supervised classification

or regression. Moreover, the size of graph (in terms of

the number of nodes) varies and is relatively small. Note

that we can use other type of embedding like node em-

bedding and then use the average (or other type of ag-

gregation) of the node embedding vectors as the whole-

graph representation. However, with this strategy the

whole graph structure is not captured properly and does

not lead to accurate vector representation [3,43].

There are quite a few works for the whole graph

embedding. Some whole-graph embedding methods rely

on the efficient calculation of graph similarities in graph

classification tasks [39,31,28,3]. These methods are su-

pervised and need a labeled dataset. In addition, they

are designed for unattributed graphs. On the con-

trary, our graphs are attributed and unlabeled. There-

fore, these types of methods are not applicable for

our problem, and we need an unsupervised method.

Graph2Vec [29] is an unsupervised method that by

maximizing the likelihood of graph subtrees given graph

embedding, generates vector representations. However,

since this model uses subgraphs, the graph global in-

formation is not captured properly [43]. In addition,

this method is not applicable for graphs with attributes

both on nodes and edges. In [43] for capturing the

whole-graph structures, they take advantage of random

walk for converting graphs to a set of sequences. It is

shown using random walk leads to better representa-

tion in comparison to the adjacency matrix, because the

random walks capture more than the immediate neigh-

bourhood. Then a LSTM autoencoder is presented to

learn graph representations. However, this method suits

unattributed graphs.

Sentences are presented with a sequence of words.

In [5,45] LSTM Variational Autoenocder is used for

text and sentence embedding and generation. The per-

formance of converting graphs to sequences in [43] and

the methods proposed in [5,45,43] motivate us to con-

vert our graphs to sequences and propose a novel LSTM

Variational Autoencoder model that suits our unlabeled

attributed graphs (both on nodes and edges). In par-

ticular, we convert each floorplan graph into a set of

sequences (which will be described in Sec. 3.5), and we

propose a generative model that maps our graphs (in

sequences) to a d-dimensional space θ : G → Rd. The

proposed model is detailed in the next section.

3.4 Model

We present a novel LSTM Variational Autoencoder ar-

chitecture illustrated in Fig. 1. LSTM is a special kind

of Recurrent Neural Network (RNN). It is designed for

learning long-term dependencies by introducing state

cell [16] to address the RNN problem with long term

sequences [4]. Autoencoders are a type of unsupervised

neural network with two connected networks. The first

network is an encoder that converts the inputs to la-

tent vectors in a low dimensional space. The second

network is the decoder, which reconstructs the origi-

nal input vector from latent vectors [20]. However, the

vanilla autoencoders map each input to a constant vec-

tor. In other words, the encoded vectors are not contin-

uous, and interpolation is not allowed. Variational Au-

toencoder (VAE) is designed to address the limitation

of vanilla autoencoders as a generative model. VAE is

a generative model that learns the Probability Density

Function (PDF) of the training data [19].

As mentioned we have attributes both on nodes and

edges with different dimensions. To address this differ-

ence in dimension, we consider two parallel LSTM VAE,

one for node sequences and one for corresponding edge

sequences. Let Sn = sn1, sn2, ..., sni be a node sequence

and Se = se1, se2, ..., sei−1 be the corresponding edge

sequence. We aim to learn an encoder and decoder to

map between the space of these two sequences and their

continuous embedding z ∈ Rd. In each branch, the en-

coder is defined by a variational posterior qφ(z|Sn) and

qφ(z|Se) and the decoder by a generative distribution

pθ(Sn|z) and pθ(Se|z), where θ and φ are learned pa-

rameters. For each branch, loss function has two terms

(Eq. 1). The first term is reconstruction error that we

used Mean Square Error (MSE). This term encourages

the decoder to learn to reconstruct the data S̄n, S̄e. The

second term which is a regularizer is Kullback-Leibler

divergence to penalize loss if the encoder outputs rep-

resentations that are different than a standard normal

distribution N(0, 1) [40]. In training, two branch loss

functions are summed for back-propagation (Eq. 1).

Losstotal = (||Sn − S̄n||2 +KL[qφ(z|Sn), N(0, 1)])+

(||Se − S̄e||2 +KL[qφ(z|Se), N(0, 1)]) (1)

In both branches for the encoder we have a LSTM

layer with 256 units. In the following we have two fully

connected layer with dimension 16 for generating µ and
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σ. Then we have the sampling and finally we have the

decoder with one LSTM layer with 256 units for recon-

structing the input sequences. The Adam [18] is used

as optimizer. Before training, each graph is converted

to a set of sequences (Sec. 3.5) and these sequences are

used as input for training. After training, each graph

is represented by averaging its sequences’ embedding

vectors.

3.5 Graphs to sequences

Graphs can converted to sequences by methods includ-

ing but not limited to random walk or Breadth First

Search (BFS). In [43] the random walk, BFS and short-

est path between all pairs of nodes are utilized. The

experiments show sequences generated by random walk

lead to a better vector representation. The reason is

random walk captures more than immediate neighbours

of nodes. Random walk is introduced in [32] for con-

verting graphs to sequences. In this version, we pick a

node, and then we pick one of its edges randomly to

move to the next node. We repeat this procedure until

we get a walk of some predefined length (length of a

walk is defined by the number of nodes on the walk,

and walk that is shorter than the predefined length will

be padded into the predefined length). Later, two other

versions are proposed.

Random Walk 1. In [13] the random walk is modified

to have two parameters Q and P . Parameter Q is the

probability of discovering the undiscovered parts of the

graph and parameter P is the probability for returning

to the previous node. We call the random walk proposed

in [13] ‘Random Walk 1’.

Random Walk 2. In [43] the random walk is modi-

fied by adding probability 1/D(N), where D(N) is the

degree of node N . In this walk we start from a node

and the next node will be selected by its probability

1/D(N). We call this random walk presented in [43] as

‘Random Walk 2’.

We used both walks with different walk lengths to

find the best performer walk and walk length. Besides

node sequences, the edge sequences are captured at the

same time. Both of nodes and edges sequences are used

for training the model.

4 Experiment, results and evaluation

4.1 Training

As described in Sec. 3.5, we converted graphs to nodes

and edge sequences. We utilized both mentioned walks

with walk length 3, 5 and 7. For random walk 1, we set

both Q and P to 0.5. For each graph, we run random

walk 11 times. Therefore, we have 11 sets of node and

edge sequences for each graph. Out of 10, one of them

is considered as proxy set (proxy graph). These proxy

sequences are used later for evaluation. In total we have

306440 nodes sequences and 306440 corresponding edge

sequences. The sequences with length less than target

length are padded with zero. We trained three models

with considering different set of features.

Model 1. In this model we only considered the de-

sign semantic features on nodes. We removed the edge

branch and the model is trained only with nodes se-

quences. The dimension of node features is 11.

Model 2. In this model we considered design seman-

tic features both on nodes and edges. The model is

trained with both branches. The features dimension on

nodes is 11 and on edges is 4.

Model 3. In this model we considered all design se-

mantic features and human behavioral features. The

model is trained with two branches. The features di-

mension on nodes is 20 and on edges is 4.

All three models have the same described architec-

ture and loss function. Note that in Model 1, the edge

branch is removed and we have only node branch’s loss

function. But, in other two models, the loss is sum-

mation of two branches loss. The learning rate was set

empirically as 0.001. All three models are trained on a

machine with 32 GB RAM, 12 * 3.50 GHz cores CPU

and Quadro K620 GPU with 2 GB Memory. In average

each model takes about 4 hours for training with 50

epochs.

4.2 Quantitative evaluation

This section presents quantitative results from the ex-

periments.

4.2.1 Nearest neighbours ranks

As mentioned, by embedding, the graphs are mapped to

a continues embedding space. The graphs with similar

structure and properties should be close to each other

in the embedding space. The closeness of two floorplans

can be measured by the euclidean distance of the two

corresponding embedding vectors (smaller distance de-

notes higher similarity). If this embedding space is well

constructed, similar floorplans in terms of structure,

semantic and behavioral properties should be close to

each other. Therefore, for each graph (called as query

graph), we compute the euclidean distance from this

graph to other graphs (including itself) and rank the

other graphs for this graph according to the distance.

We hypothesize that each graph should find itself as
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Table 2 Nearest neighbour ranks (Sec. 4.2.1) with two types
of random walks and walk length 3, 5 or 7. For each graph,
we compute the euclidean distance from this graph to other
graphs (including itself and a proxy graph which is a different
set of sequences of the query graph) and rank the other graphs
for this graph according to the euclidean distance. Each graph
should find itself as the first nearest neighbour and its proxy
graph in close ranks. We calculate the percentage of graphs
that have themselves in the first rank and the percentage of
proxy graphs in the other top four ranks (e.g., ‘[0, 75, 4, 2, 2]’
in the table denotes that 75% graphs have their proxy as the
top 2 nearest neighbor, 4% as top 3, 2% as top 4, and 2% as
top 5). This analysis showcases that walk length 5 can lead
to better performance, and the random walk 2 is superior.

Walk
Length

Rank of
query floorplan

within 5 NN

Rank of
proxy graph
within 5 NN

Random
Walk 1

3
5
7

[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]

[0, 49, 2, 1, 1]
[0, 75, 4, 2, 2]
[0, 57, 2, 1, 1]

Random
Walk 2

3
5
7

[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]

[0 , 83, 3, 2, 1]
[0, 94, 2 , 1, 1]
[0, 89, 3, 1, 1]

the first nearest neighbour and its proxy graph (a dif-

ferent set of sequences for query graph) in close ranks.

For this study, we use the model 3 to obtain the top 5

nearest neighbours for each floorplan in the learned em-

bedding space. We calculate the percentage of graphs

that have themselves in the first rank and the percent-

age of proxy graphs in the other four ranks. The table

2 shows these percentages with different walk lengths

for both random walks.

As table 2 shows, in both random walks, walk length

5 leads to better performance. In addition, the random

walk 2 is superior. By random walk 2 and walk length

5, each graph by itself is in the first rank and 94% of
proxy graphs in second rank. Since proxy graphs are a

different set of sequences on the graphs, if the model

performs properly, a good percent of the proxy graphs

should be present in top ranks. Random walk 2 per-

forms better since it captures our graphs structure bet-

ter because in graphs (i.e., floorplans) we have always

a main node (i.e., room) with high degree. Then mov-

ing toward this node gives the sequences that capture

our graph structure better. The walk length has depen-

dency to size of the available graphs in dataset. For

us walk length 5 is the suitable length since in both

random walks, the embedding performance is better in

compare to walk length 3 and 5.

4.2.2 Clustering

As mentioned in previous section floorplans with similar

properties are close in the embedding space. This sim-

ilarity is in term of floorplans structure, design seman-

Table 3 Average of standard deviation for number of nodes,
node degrees average and node types in clusters out of 1000
samples.

Number

of nodes

Average

of node degrees

Node

types

STD 0.16 0.09 1.07

tics and human behavioral features. There are many

parametric method for clustering like KMeans [44] that

we need to give the number of clusters as input param-

eter. Since we do not want to limit ourself to a speci-

fied number of clusters, we used Density Based Spatial

Clustering of Applications with Noise (DBSCAN). It is

a non parametric clustering method based on density.

Each dense region (close packed points) represents a

cluster and the points in low density regions are marked

as outliers. It has two parameters, the minimum num-

ber of points in each cluster and the maximum distance

between two samples in each cluster [10].

We run DBSCAN over our embedding space to clus-

ter it and then we used TSNE [26] to reduce vectors di-

mension to two. The Fig. 3 shows the resulting clusters

over 1000 samples. We evaluated some clusters to see

whether the samples in clusters follow the same pattern

or not. We observed almost in all considered clusters the

number of nodes, node degrees, node types and features

are close. Except features closeness we can calculate the

standard deviation for number of nodes, average of node

degrees and node types for each cluster. We calculated

the mentioned metrics for all clusters out of 1000 sam-

ples and their averages are provided in Table 3. In Fig.

3, two sample floorplans from one of the clusters de-

picted which shows the graph properties are encoded

accurately with our model.

Fig. 3 The clusters after running DBSCAN over 1000 ran-
dom samples. Two samples from one of the cluster are shown.
They have the same number of nodes, same node degrees and
similar room types. This shows the embedding space indeed
captures the design semantics of floorplans.
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4.3 Qualitative evaluation

This section presents qualitative results from the exper-

iments.

4.3.1 Nearest neighbours (NNs)

As described we trained three models with different set

of features. Each model makes an embedding space.

We selected three random floorplans and found their

top 5 nearest neighbours in the corresponding embed-

ding space of each model. The Fig. 4 shows the query

floorplans and their top 5 nearest neighbours. For each

sample, first row shows the NNs in the first model’s em-

bedding space, second line shows the NNs in the sec-

ond model’s embedding space and third row shows the

NNs in the third model’s embedding space. As shown

in the image, with the first model, the floorplans have

the same structure in term of the rooms numbers, room

(node) degrees and room types. But the room arrange-

ments are not similar. In the second model, since the

edge features are added, the high rank NNs follow the

same arrangement and with moving toward low rank

NNs the arrangement similarity is dcreased. However,

they have similar structure yet. In the third model, the

human behavior features are added as well and now

floorplans with similar behavioral features get close to

query floorplans. The last row for each sample shows

the visualization of crowd flow rate. The numbers in-

side floorplans in first and second row shows the square

footage of each room. In third rows the numbers depict

flow rates. Please note, as mentioned in section 3.2, the

north is at the top and other directions are recognized

correspondingly.

5 Floorplan generation

Given that variational autoencoders are generative, we

study the skill of our model for generating new floor-

plans. Generating new floorplans can be done with sam-

pling from posterior distribution of sequences or with

homotopies [5,45].

5.1 Sampling from posterior distribution

VAE learns the data distribution instead of determinis-

tic mapping. Therefore, we can sample from these pos-

terior distributions for generating new data. As men-

tioned in Sec. 4.1, for each graph, we run random walk

11 times to generate 11 sets of node and edge sequences.

To generate a new floorplan, we select a floorplan and a

set from its 11 sets of node and edge sequences. By de-

coding the samples from posterior distribution of these

sequences, we get new sequences. There could be dif-

ferent strategies to produce a new floorplan with these

newly generated sequences. We select the node with

the highest degree that is repeated in all sequences as

the main node. Therefore, the arrangement of other

rooms can be fixed relatively. These new sequences give

us information about room types and square footage.

Our method does not encode the geometry shape of

rooms, therefore, we can assume the room shapes are

similar to the originally selected floorplan or any arbi-

trary shapes that satisfy the generated square footages

(Fig. 6). Generating new floorplans with this approach

is limited and gives us similar floorplans in terms of

the number of rooms and room types, the only changes

in new floorplans are the square footage and geome-

try shape of rooms. The square footage generated in

the new sequences do not have the same value for each

room, however, with considering the original sequences

as references, the average of generated square footage

can be used for a new floorplan.

5.2 Homotopies

VAE makes a continues embedding space, and it al-

lows interpolation in this space. We used the concept

of homotopy that means the set of points on the line

between two embedding vectors. Instead of a set of ran-

dom points, we limit our experiment to the point in the

middle of the line. We can select two random sequences

from two random floorplans, and after encoding them,

we can calculate the difference of their embedding vec-

tors. Adding half of their difference to the base vector

and decoding it gives us a new sequence. Fig. 5 shows

an example. By replacing the newly generated sequence

with the old random sequence from the original floor-

plan, we can generate new floorplans. It can happen be-

tween any other random sequences as well, and in this

way, we can generate more derivative samples. Different

strategies for interpolation and generating new floor-

plans could be used here. With homotopy we do not

have the mentioned limitations in sampling from pos-

terior distribution. Floorplans with varying room types

can be generated as a result of interpolation, and the

only limitation is the geometry shape of rooms, which

is not encoded. To address this limitation, we can as-

sume the geometry shapes are the same as reference

floorplans or any arbitrary shapes that satisfy the gen-

erated square footages.
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Fig. 4 The top 5 NNs for three floorplans found with three models. The first row shows the NNs with first model, second row
shows the NNs with second model and third row shows the NNs with third model. The color of the room denotes the room
type, and the numerical value inside each node denotes the square footage of the room. In the third row of each sample, the
crowd flow is visualized and the numbers depicts flow rates. See Sec. 4.3.1 for details.
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6 User study

In this section, we present a user study to evaluate the

quality and efficiency of our models of graph embed-

dings. Three different embedding models are tested: (1)

trained with design semantic features alone, (2) design

semantic and edge features, and (3) design semantic,

edge and behavioral features. Given a floorplan (input),

we query five similar floorplans (nearest neighbours)

from each embedding model. Our hypothesis is twofold:

(a) the user perceived sequence of floorplans as top-five

nearest neighbours matches with the sequence captured

by our model as nearest neighbours, and (b) users per-

form better in their perceived sequence of top-five near-

est neighbours for models (2) and (3) than model (1)

which is only trained with design semantic features.

6.1 Apparatus

Floorplans are presented as 2D blueprints (e.g. a top-

down skeletal view of an environment layout). The users

(e.g. study participants) viewed these blueprints as

high-resolution images on their own computer screens

via an online survey. For model (1), each room in a floor-

plan is annotated with room dimension (e.g., square

footage area) and color-coded with respect to its room

type. The annotation for model (2) is similar to model

(1) with an addition of edges between rooms and their

respective directions (e.g., North, East, West, South).

For model (3), we showed color-coded trajectories of

virtual occupants from the rooms they spawned-in to

the exit, along with square footage area of each.
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Demographic Information

Gender Sex Age Country of Residence

Female: 4 (40%) Female: 4 (40%) 18 - 24 years old: 4 (40%) China: 1 (10%)
Male: 6 (60%) Male: 6 (60%) 25 - 34 years old: 4 (40%) United States: 4 (40%)

35 - 44 years old: 2 (20%) Canada: 5 (50%)

Domain Knowledge

Poor Below Average Average Above Average Excellent Avg. scale

Ability to interpret architectural
or interior designs?

0 (0%) 1 (10%) 1 (10%) 7 (70%) 1 (10%) 3.80

Prior experience with architec-
ture or interior designs?

2 (20%) 0 (0%) 1 (10%) 6 (60%) 1 (10%) 3.40

Prior experience in urban plan-
ning and design?

3 (30%) 0 (0%) 2 (20%) 5 (50%) 0 (0%) 2.90

Prior understanding of compu-
tational tools for architectural
design-space exploration?

2 (20%) 0 (0%) 3 (30%) 5 (50%) 0 (0%) 3.10

Prior understanding of pedes-
trian movement flow or crowd
flow?

0 (0%) 2 (20%) 4 (40%) 3 (30%) 1 (10%) 3.30

Table 4 Demographic information and domain knowledge ratings of expert participants (self-reported).

6.2 Participants

Ten (10) domain experts from the architecture commu-

nity (4 female and 6 male) voluntarily participated in

the user study. Table 4 shows the demographic informa-

tion and domain knowledge of the experts. On average,

all the participants had above-average experience and

expertise in interpreting architecture designs and were

Knowledgeable of computational tools for design space

exploration (self-reported).

6.3 Procedure and Task

The user study is conducted as an online survey and

delivered in four parts. In part (a), users are asked to

provide their demographic information and report the

domain knowledge and expertise in architecture and ur-

ban design. In part (b), users are presented with five

different input floorplans. For each input floorplan, a

sequence of 5 nearest neighbours are presented in a

randomized order, which are retrieved using model (3),

and presented to the users “without” any visual an-

notations. Users are asked to interactively reorder the

given sequence of floorplans (e.g., via drag and drop),

based on their perceived ”similarity” of these floorplans

with respect to input floorplan. The ordering sequence

is arranged such that, more a floorplan is towards left

in the order, the nearest it gets to the input floorplan.

In parts (c), (d) and (e), the nearest neighbours are re-

trieved using models (1), (2) and (3) respectively, for

the same five input floorplans which are used in part

(b). In parts (c), (d), and (e), the floorplans are pre-

sented to the users “with” visual annotations for their

respective features. We estimated that the user study

will take up to 15 minutes at maximum to complete.

6.4 Independent and Dependent Variables

Input floorplans and the retrieved nearest neighbours

from the models are the primary independent variables.

The rearranged sequences of floorplans by the users are

the only dependent variables.

6.5 Results

Figure 7 shows the user-ordered sequences of the near-

est neighbours for the three models from user study.

The colored bars for each neighbour of an input floor-

plan represent the number of users who correctly per-

ceived the order of the neighbour in the given sequence.

Overall, about 28.68% of the neighbours are accurately

ordered in their sequences based on their perceived sim-

ilarity with respect to input flooplans for model (1),

59.28% for model (2) and about 77.6% for model (3),

collectively by all the users. These results highlight that

users least performed when they had to perceive the

similarity between floorplans by considering the design

semantic features alone, whereas they performed com-

paratively better when presented with the neighbours

annotated with edge and/or behavioural attributes.

The users performed the best for the model (3) when

presented with the floorplans visually annotated with
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design semantics (e.g., room types), edge (e.g., move-

ment direction of the agents), and behavioural (e.g.,

movement flow of the agents) features. The findings

from the user study suggest that both of our hypothesis

stand valid.

We also wanted to analyze the users’ performance

in perceiving the ordering sequence of the neighbours

when floorplans are not visually annotated with their

respective features. To test this, we used the input floor-

plans and their neighbours from model (3) and pre-

sented them as model (0) in the user study. These floor-

plans were presented to the users without any visual an-

notations. This was so we could analyze how important

is the visual annotation of the features, and its signif-

icance to assist users in perceiving the neighbours in

their correct order. Interestingly, about 45.68% of the

neighbours were accurately ordered in their sequences

based on their perceived similarity with respect to in-

put flooplans for model (0). This result revealed that

the annotations for design semantic features, alone, are

not a good representative to convey the spatial feature

information of the floorplans. As well, that the users

better perceive the floorplans retrieved from the em-

bedding space that is trained not only with the design

semantic feature alone but also with the additional edge

or/and dynamic behavioural features.

7 Conclusion

This paper aims to represent floorplans with numeri-

cal vectors such that design semantic and human be-

havioral features are encoded. Specifically, the frame-

work consists of two components. In the first compo-

nent, an automated tool is designed for converting floor-

plan images to attributed graphs. The attributes are

design semantic and human behavioral features gener-

ated by simulation. In the second component, we pro-

posed a novel LSTM Variational Autoencoder for both

embedding and generating floorplans. The qualitative,

quantitative and expert evaluation shows our embed-

ding framework produces meaningful and accurate vec-

tor representations for floorplans, and its abilities for

generating new floorplans are showcased. In addition,

we make our dataset public to facilitate the research in

this domain. This dataset includes both the extracted

design semantics features and simulation generated hu-

man behavioral features.

This contribution holds promise to pave the way

for novel developments in automated floorplan cluster-

ing, exploration, comparison and generation. By encod-

ing latent features in the floorplan embedding, design-

ers can store multi-dimensional information of a build-

ing design to quickly identify floorplan alterations that

share similar or different features. While in this work,

we encode features derived from dynamic crowd simula-

tions of building occupancy, the proposed approach can

virtually scale to encode any kind of static or dynamic

performance metric.
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