Skip to main content
Log in

Generalization-error-bound-based discriminative dictionary learning

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Support vector guided dictionary learning, as a discriminative dictionary learning method combining with support vector machine (SVM), embodies the margin maximization principle and achieves good generalization performances in many practical applications. However, this method ignores the key fact that the generalization performance of the SVM classifier depends not only on the margin between two classes of training samples, but also on the radius of the smallest sphere covering them. In the paper, we propose a novel method called generalization-error-bound-based discriminative dictionary learning (GEBDDL). The basic insight of GEBDDL is that the coding vectors, which are used to build the SVM classifier, are not fixed during the learning process. As a result, the radius of the smallest sphere changes with the learned coding vectors. The key feature of GEBDDL is that it explicitly incorporates the radius-margin-bound, which is directly related to the upper bound of the leave-one-out error of SVM, into its objective function to guide learning the dictionary and the coding vectors, and building the SVM classifier. In the paper, we first elaborate our motivation and propose the optimization model and then discuss how to solve it in detail. Further, we explore how to approximate the radius of the smallest sphere in our methodology. This can enhance the computational efficiency by bypassing the quadratic programming problem of computing the radius, while yielding a close performance to GEBDDL. Finally, the comprehensive experiments are conducted on several benchmark datasets, and the results demonstrate the superiority of the proposed methods over the other competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, Q., Zhang, C., Guo, Q., Xu, H., Zhou, Y.: Adaptive sparse coding on PCA dictionary for image denoising. Visual Comput (2016)

  2. Yu, L., Yong, X., and Hui, J.: Removing rain from a single image via discriminative sparse coding. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)

  3. Li, H., He, X., Tao, D., Tang, Y., Wang, R.: Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recognit. 79, 130–146 (2018)

    Article  Google Scholar 

  4. Montazeri, A., Shamsi, M., Dianat, R.: MLK-SVD, the new approach in deep dictionary learning. Visual Comput. 23, 1–9 (2020)

    Article  Google Scholar 

  5. Wen, Z., Hou, B., Jiao, L.: Discriminative dictionary learning with two-level low rank and group sparse decomposition for image classification. IEEE Trans. Cybern. 47(11), 3758–3771 (2017)

    Article  Google Scholar 

  6. Wang, J., Kong, S.: A classification-oriented dictionary learning model: Explicitly learning the particularity and commonality across categories. Pattern Recognit, 47(2), pp. 885 – 898 (2014). [Online]. http://www.sciencedirect.com/science/article/pii/S0031320313003245

  7. Jiang, J., Hu, R., Han, Z., Wang, Z.: Low-resolution and low-quality face super-resolution in monitoring scene via support-driven sparse coding. J. Signal Process. Syst. 75(3), 245–256 (2014)

    Article  Google Scholar 

  8. Fotiadou, K., Tsagkatakis, G., Tsakalides, P.: Spectral super resolution of hyperspectral images via coupled dictionary learning. IEEE Trans. Geosci. Remote Sens. 57(5), 2777–2797 (2019)

    Article  Google Scholar 

  9. Liling, Z., Quansen, S., Zelin, Z.: Single image super-resolution based on deep learning features and dictionary model. IEEE Access, pp. 1–1

  10. Wright, J., Ganesh, A., Zhou, Zihan., Wagner, A., Yi Ma.: Demo: robust face recognition via sparse representation, pp. 1–2 (2008)

  11. Zhang, L., Yang, M., Feng, X.: ’Sparse representation or collaborative representation: Which helps face recognition?, pp. 471–478 (2011)

  12. Xu, Y., Zhong, Z., Yang, J., You, J., Zhang, D.: A new discriminative sparse representation method for robust face recognition via \(\text{ l}_{2}\) regularization. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–10 (2016)

    Article  Google Scholar 

  13. Li, Z., Zhang, Z., Qin, J., Zhang, Z., and Shao, L.: Discriminative fisher embedding dictionary learning algorithm for object recognition. IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15 (2019)

  14. Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 791–804 (2010)

    Article  Google Scholar 

  15. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis (2008)

  16. Qiang, Z., Li, B.: Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

  17. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent k-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  18. Li, Z., Lai, Z., Xu, Y., Yang, J., Zhang, D.: A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 278–293 (2017)

    Article  MathSciNet  Google Scholar 

  19. Yang, M., Zhang, L., Feng, X., Zhang, D.: Sparse representation based fisher discrimination dictionary learning for image classification. Int. J. Comput. Vis. 109(3), 209–232 (2014)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y., Zhang, Z., Lu, G., Yang, J.: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recognit 54, 68–82 (2016)

    Article  Google Scholar 

  21. Zhang, Z., Xu, Y., Shao, L., Yang, J.: Discriminative block-diagonal representation learning for image recognition. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–15 (2017)

    Article  Google Scholar 

  22. Deng, W., Hu, J., Guo, J.: Face recognition via collaborative representation: its discriminant nature and superposed representation. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–1 (2017)

    Google Scholar 

  23. Cai, S., Zuo, W., Zhang, L., Feng, X., Wang, P.: Support vector guided dictionary learning. In: European Conference on Computer Vision (2014)

  24. Vapnik, V. N.: The nature of statistical learning theory (1995)

  25. Do, H., Kalousis, A.: Convex formulations of radius-margin based support vector machines. In: 30th International Conference on Machine Learning, ICML 2013, pp. 169–177 (2013)

  26. Do, H., Kalousis, A., Hilario, M.: Feature weighting using margin and radius based error bound optimization in SVMS, pp. 315–329 (2009)

  27. Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.: Large-scale image classification: fast feature extraction and SVM training, pp. 1689–1696 (2011)

  28. Foody, G.M., Mathur, A.: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93(1–2), 107–117 (2004)

    Article  Google Scholar 

  29. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)

    Article  Google Scholar 

  30. Chapelle, O.: Training a support vector machine in the primal. Neural Comput. 19(5), 1155 (2007)

    Article  MathSciNet  Google Scholar 

  31. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Conference on Advances in Neural Information Processing Systems (2007)

  32. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  Google Scholar 

  33. Zheng, M., Bu, J., Chen, C., Wang, C., Cai, D.: Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)

    Article  MathSciNet  Google Scholar 

  34. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  35. Georghiades, A.S., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  36. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  37. Martínez, A., Benavente, R.: The AR face database. In: CVC Technical Report 24 (1998)

  38. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on in Applications of Computer Vision, 1994 (1994)

  39. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  40. Rate, C., Retrieval, C.: Columbia object image library (coil-20) (2011)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61602390; and in part by the Innovation Fund of Postgraduate, Xihua University under Grant ycjj2019085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Given formula (25)

$$\begin{aligned}&{{{{\mathcal {F}}}}_1}(\mathbf{{S}}) = \left\| {\mathbf{{X}} - \mathbf{{DS}}} \right\| _2^2 + {\lambda _1}\left\| \mathbf{{S}} \right\| _2^2 \nonumber \\&{} { {{{{\mathcal {F}}}}_2}(\mathbf{{S}}) = \hat{R}^{2} {} {}} \nonumber \\&{}=\max _{\beta _{i}} \sum _{i=1}^{N} \beta _{i} \tilde{k}\left( {\mathbf {s}}_{i}, {\mathbf {s}}_{i}\right) -\sum _{i=1}^{N} \sum _{j=1}^{N} \beta _{i} \beta _{j} \tilde{k}\left( {\mathbf {s}}_{i}, {\mathbf {s}}_{i}\right) \nonumber \\&{}={\text {tr}}\left( {\mathbf {S}} {\varvec{\Lambda }} {\mathbf {S}}^{T}+\frac{1}{2 \theta } {\mathbf {e}} \varvec{\beta }\right) -\varvec{\beta }^{T}\left( {\mathbf {S}}^{T} {\mathbf {S}}+\frac{1}{2 \theta } {\mathbf {I}}\right) \varvec{\beta } \nonumber \\&{} {{{{\mathcal {F}}}}_3}(\mathbf{{S}}) = \sum \limits _{c = 1}^C {\left( {{{\left\| {{\mathbf{{w}}_c}} \right\| }^2}\mathrm{{ + }}\theta \sum \limits _{i = 1}^N {{\delta _i}{{\left( {1 - y_i^c(\mathbf{{w}}_c^T{\mathbf{{s}}_i} + {b_c})} \right) }^2}} } \right) } \nonumber \\ \end{aligned}$$
(47)

The detailed derivation is as follows, first of all, for \({\mathcal{F}_1}(\mathbf{{S}})\), we have

$$\begin{aligned} \begin{aligned} {\mathcal {F}}_{1}({\mathbf {S}})&=({\mathbf {X}}-{\mathbf {D}} {\mathbf {S}})^{T}({\mathbf {X}}-\mathbf {D S}) +\lambda _{1} {\mathbf {S}}^{T} {\mathbf {S}}\\&=\left( {\mathbf {X}}^{T} {\mathbf {X}}-{\mathbf {X}}^{T} {\mathbf {D}} {\mathbf {S}}-{\mathbf {S}}^{T} {\mathbf {D}}^{T} {\mathbf {D}} {\mathbf {S}}\right) +\lambda _{1}{\mathbf {S}}^{T} {\mathbf {S}} \end{aligned} \end{aligned}$$
(48)

The partial derivatives of \({\mathcal {F}}_{1}({\mathbf {S}})\) with respect to \({\mathbf {S}}\) can be formulated as

$$\begin{aligned} \frac{{\partial {{{{\mathcal {F}}}}_1}(\mathbf{{S}})}}{{\partial \mathbf{{S}}}} = 2{\mathbf{{D}}^T}{} \mathbf{{DS}} - 2{\mathbf{{D}}^T}{} \mathbf{{X}} + 2{\lambda _1}{} \mathbf{{S}} \end{aligned}$$
(49)

The partial derivatives of \({\mathcal {F}}_{2}({\mathbf {S}})\) with respect to \({\mathbf {S}}\) can be formulated as

$$\begin{aligned} \begin{aligned} \frac{\partial {\mathcal {F}}_{2}({\mathbf {S}})}{\partial {\mathbf {S}}}&=\frac{\partial \left( {\text {tr}}\left( {\mathbf {S}} {\varvec{\Lambda }} {\mathbf {S}}^{T}\right) -\varvec{\beta }^{T} {\mathbf {S}}^{T} {\mathbf {S}} \varvec{\beta }\right) }{\partial {\mathbf {S}}}\\&=\frac{\partial \left( {\text {tr}}\left( {\mathbf {S}} {\varvec{\Lambda }} {\mathbf {S}}^{T}\right) -{\text {tr}}\left( \varvec{\beta }^{T} {\mathbf {S}}^{T} {\mathbf {S}} \varvec{\beta }\right) \right) }{2 {\mathbf {S}}}\\&=2\mathbf{S}{\varvec{\Lambda }} - 2\varvec{\beta }{\varvec{\beta }}^T\mathbf{{S}} \end{aligned} \end{aligned}$$
(50)

For \({{{{\mathcal {F}}}}_3}(\mathbf{{S}})\), there are two cases for discussion. First, when \(y_i^c(\mathbf{{w}}_c^T{\mathbf{{s}}_i} + {b_c})<1\),

$$\begin{aligned} {{{{\mathcal {F}}}}_3}(\mathbf{{S}}) = \sum _{c=1}^{C} \min _{{\mathbf {w}}_{c}, b_{c}}\left( \begin{array}{l} \left\| {\mathbf {w}}_{c}\right\| ^{2}+n\left( 1+b_{c}^{2}\right) +{\mathbf {w}}_{c}^{T}\left( \mathbf {S S}^{T}\right) {\mathbf {w}}_{c} \\ +2 {\mathbf {w}}_{c}(\mathbf {S e})^{T} b_{c}-2 {\mathbf {w}}_{c}^{T} {\mathbf {S}} {\mathbf {y}}_{c}-2 {\mathbf {y}}_{c}^{T} {\mathbf {e}} b_{c} \end{array}\right) \end{aligned}$$
(51)

When \(y_{i}\left( {\mathbf {w}}_{c}^{T} {\mathbf {s}}_{i}+b_{c}\right) \,\ge \,q 1\)

$$\begin{aligned} {\mathcal {F}}_{3}({\mathbf {S}})=\sum _{c=1}^{C} \min _{{\mathbf {w}}_{c}, b_{c}}\left\| {\mathbf {w}}_{c}\right\| ^{2} \end{aligned}$$
(52)

Hence, the partial derivatives of \({\mathcal {F}}_{3}({\mathbf {S}})\) with respect to \({\mathbf {S}}\) can be formulated as

$$\begin{aligned} \frac{\partial {\mathcal {F}}_{3}({\mathbf {S}})}{\partial {\mathbf {S}}}=\sum _{c=1}^{C}\left( 2 {\mathbf {w}}_{c} {\mathbf {w}}_{c}^{T} {\mathbf {S}}+b_{c} {\mathbf {w}}_{c} {\mathbf {e}}^{T}-{\mathbf {w}}_{c} {\mathbf {y}}_{c}^{T}\right) \end{aligned}$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, X., Xu, T. et al. Generalization-error-bound-based discriminative dictionary learning. Vis Comput 38, 2853–2869 (2022). https://doi.org/10.1007/s00371-021-02160-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02160-z

Keywords

Navigation