Skip to main content
Log in

Underwater sound propagation for virtual environments

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Realistic sound effect synchronized with visual rendering can greatly improve the immersive sense of a user in virtual reality (VR). Prior work focuses on sound propagation in air without considering the characteristics of underwater, thus cannot be directly extended for underwater scenarios. This paper proposes a novel method for simulating sound propagation in underwater scenes. We combine the normal mode method in oceanography with an improved ray tracing method to effectively calculate underwater sound propagation. A normal mode method is adapted for sound pressure calculation in the low-frequency domain. In the high-frequency domain, by considering the characteristics of underwater, we propose a threshold-based improved ray tracing method to compute the impulse response, bringing results closer to real values at higher efficiency. We sample the possible listener positions and use backward ray tracing to perform interpolation and extrapolation at runtime. Our simulation results are realistic at interactive rendering rates for scenes with moving sources. To the best of our knowledge, this is the first time that a sound propagation model tailored for underwater environment is presented in the field of VR. Various experiments in underwater scenes validated our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alien, J.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(S1), 943–950 (1998)

    Google Scholar 

  2. Antani, L., Manocha, D.: Aural proxies and directionally-varying reverberation for interactive sound propagation in virtual environments. IEEE Trans. Vis. Comput. Graph. 19(4), 567–575 (2013)

    Article  Google Scholar 

  3. Aretz, M.: Combined wave and ray based room acoustic simulations of small rooms: challenges and limitations on the way to realistic simulation results. Ph.D. thesis, RWTH Aachen University, Aachen (2012)

  4. Cao, C., Ren, Z., Schissler, C., Manocha, D., Zhou, K.: Interactive sound propagation with bidirectional path tracing. ACM Trans. Graph. 35(6), 180:1–180:11 (2016)

    Article  Google Scholar 

  5. Drumm, I., Lam, Y.: The adaptive beam-tracing algorithm. J. Acoust. Soc. Am. 107(3), 1405–1412 (2000)

    Article  Google Scholar 

  6. Ellis, D.D., Vance Crowe, D.: Bistatic reverberation calculations using a three-dimensional scattering function. J. Acoust. Soc. Am. 89(5), 2207–2214 (1999)

    Article  Google Scholar 

  7. Evans, R.B.: Stepwise coupled mode scattering of ambient noise by a cylindrically symmetric seamount. J. Acoust. Soc. Am. 119(1), 161–167 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fornberg, B.: The pseudospectral method: accurate representation of interfaces in elastic wave calculations. Geophysics 53(5), 625–637 (1988)

    Article  Google Scholar 

  9. Gensane, M.: Sea surface scattering strength: theory versus experiments and Chapman–Harris formula. Acta Acust. United Acust. 88(5), 630–633 (2002)

    Google Scholar 

  10. Gumerov, N.A., Ramani, D.: A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. J. Acoust. Soc. Am. 125(1), 191–205 (2009)

    Article  Google Scholar 

  11. Hampel, S., Langer, S., Cisilino, A.P.: Coupling boundary elements to a raytracing procedure. Int. J. Numer. Methods Eng. 73(3), 427–445 (2010)

    Article  MathSciNet  Google Scholar 

  12. James, D., Barbic, J., Pai, D.: Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25(3), 987–995 (2006)

    Article  Google Scholar 

  13. Knobles, D.P., Stotts, S.A., Koch, R.A.: Low frequency coupled mode sound propagation over a continental shelf. J. Acoust. Soc. Am. 113(2), 781–787 (2003)

    Article  Google Scholar 

  14. Laine, S., Siltanen, S., Lokki, T., Savioja, L.: Accelerated beam tracing algorithm. Appl. Acoust. 70(1), 172–181 (2009)

    Article  Google Scholar 

  15. Liu, S., Liu, J.: Outdoor sound propagation based on adaptive FDTD-PE. In: IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 859–867 (2020)

  16. Liu, S., Manocha, D.: Sound synthesis, propagation, and rendering: a survey. arXiv: 2011.05538 (2020)

  17. Markovic, D., Antonacci, F., Sarti, A., Tubaro, S.: 3D beam tracing based on visibility lookup for interactive acoustic modeling. IEEE Trans. Vis. Comput. Graph. 22(10), 2262–2274 (2016)

    Article  Google Scholar 

  18. Mechel, F.: Improved mirror source method in roomacoustics. J. Sound Vib. 256(5), 873–940 (2002)

    Article  Google Scholar 

  19. Mehra, R., Antani, L., Kim, S., Manocha, D.: Source and listener directivity for interactive wave-based sound propagation. IEEE Trans. Vis. Comput. Graph. 20(4), 495–503 (2014)

    Article  Google Scholar 

  20. Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., Manocha, D.: Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32(2), 19:1–19:13 (2013)

    Article  Google Scholar 

  21. Micah, T., Anish, C., Qi, M., Christian, L., Carl, S., Dinesh, M.: Guided multiview ray tracing for fast auralization. IEEE Trans. Vis. Comput. Graph. 18(11), 1797–1810 (2012)

    Article  Google Scholar 

  22. Mo, Q., Yeh, H., Manocha, D.: Tracing analytic ray curves for light and sound propagation in non-linear media. IEEE Trans. Vis. Comput. Graph. 22(11), 2493–2509 (2015)

    Article  Google Scholar 

  23. Porter, M.B.: The KRAKEN Normal Mode Program (2008)

  24. Raghuvanshi, N.: Interactive physically-based sound simulation. Ph.D. thesis, University of North Carolina at Chapel Hill (2010)

  25. Raghuvanshi, N., Narain, R., Lin, M.C.: Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15(5), 789–801 (2009)

    Article  Google Scholar 

  26. Raghuvanshi, N., Snyder, J.: Parametric wave field coding for precomputed sound propagation. ACM Trans. Graph. 33(4), 38:1–38:11 (2014)

    Article  Google Scholar 

  27. Raghuvanshi, N., Snyder, J.: Parametric directional coding for precomputed sound propagation. ACM Trans. Graph. 37(4), 108:1–108:11 (2018)

    Article  Google Scholar 

  28. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., Govindaraju, N.: Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29(4), 68:1–68:11 (2010)

    Article  Google Scholar 

  29. Rojas, D., Cowan, B., Kapralos, B., Colllins, K., Dubrowski, A.: The effect of sound on visual realism perception and task completion time in a cel-shaded serious gaming virtual environment. In: The Seventh International Workshop on Quality of Multimedia Experience (2015)

  30. Rycroft, M.: Computational electrodynamics, the finite-difference time-domain method. J. Atmos. Terr. Phys. 5(15), 629–670 (2005)

    Google Scholar 

  31. Sakamoto, S., Ushiyama, A., Nagatomo, H.: Numerical analysis of sound propagation in rooms using the finite difference time domain method. J. Acoust. Soc. Am. 120(5), 3008 (2006)

    Article  Google Scholar 

  32. Schissler, C., Mehra, R., Manocha, D.: High-order diffraction and diffuse reflections for interactive sound propagation in large environments. ACM Trans. Graph. 33(4), 39:1–39:12 (2014)

    Article  Google Scholar 

  33. Tang, Z., Morales, N., Manocha, D.: Dynamic sound field synthesis for speech and music optimization. In: ACM Multimedia, pp. 1–9 (2018)

  34. Wang, J., James, D.: Kleinpat: optimal mode conflation for time-domain precomputation of acoustic transfer. ACM Trans. Graph. 38(4), 122:1–122:12 (2019)

    Google Scholar 

  35. Wang, Y., Safavi-Naeini, S., Chaudhuri, S.K.: A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. IEEE Trans. Antennas Propag. 48(5), 743–754 (2000)

    Article  Google Scholar 

  36. Yang, Y., Li, Y.: Parabolic equation method coupled with galerkin normal wave solution for underwater acoustic propagation calculation. Acta Oceanol. Sin. 29(6), 33–39 (2007)

    Google Scholar 

  37. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

  38. Yeh, H., Mehra, R., Ren, Z., Antani, L., Manocha, D., Lin, M.: Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans. Graph. 32(6), 165:1–165:11 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This work was partly supported by the Natural Science Foundation of China under Grant Nos. 62072328 and 61672375.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 18443 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Liu, S. Underwater sound propagation for virtual environments. Vis Comput 37, 2797–2807 (2021). https://doi.org/10.1007/s00371-021-02175-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02175-6

Keywords

Navigation