Skip to main content
Log in

Toward virtual stair walking

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a motion remapping-based locomotion technique. Our technique can provide a realistic sensation of climbing and descending stairs when users navigate the virtual environment on foot. The main contribution is to provide users a realistic experience of walking up and down virtual stairs while in reality, they are walking on a flat surface. When a user lifts their real foot, our technique controls the position of virtual foot in order to match the timing of real foot touching the floor with that of virtual foot touching the stairs. The avatar’s head and waist are also controlled to mimic the height change movements of stair walking. To achieve this, we collected the actual motion data beforehand and then designed our locomotion technique using the data. Then, we conducted an experiment and an application test. In the experiment, we identified how much visual gain should be applied to foot motion to induce a realistic sensation of stair walking. The results demonstrated that applying visual gains of 1.193 and 0.822 to motions of climbing and descending the stairs were accepted as the most realistic, respectively. In the application test, we investigated whether the proposed technique successfully increases the user’s perceived presence and provides a positive user experience. The results demonstrated that the user’s perceived presence was significantly enhanced when we applied visual gains. The results also showed that participants felt as if they were walking on the stairs in the virtual environment without experiencing discomfort or postural instability. As the proposed technique only needs visual cue control, we expect that it can easily be applied to commercial applications .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abtahi, P., Follmer, S.: Visuo-haptic illusions for improving the perceived performance of shape displays. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018)

  2. Asjad, N.S., Adams, H., Paris, R., Bodenheimer, B.: Perception of height in virtual reality: a study of climbing stairs. In: Proceedings of the 15th ACM Symposium on Applied Perception, pp. 1–8 (2018)

  3. Azmandian, M., Hancock, M., Benko, H., Ofek, E., Wilson, A.D.: Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In: Proceedings of the 2016 chi conference on human factors in computing systems, pp. 1968–1979 (2016)

  4. Bergström, J., Mottelson, A., Knibbe, J.: Resized grasping in vr: Estimating thresholds for object discrimination. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 1175–1183 (2019)

  5. Bhandari, J., MacNeilage, P.R., Folmer, E.: Teleportation without spatial disorientation using optical flow cues. In: Graphics interface, pp. 162–167 (2018)

  6. Biocca, F., Kim, J., Choi, Y.: Visual touch in virtual environments: an exploratory study of presence, multimodal interfaces, and cross-modal sensory illusions. Presence Teleop. Virtual Environ. 10(3), 247–265 (2001)

    Article  Google Scholar 

  7. Botvinick, M., Cohen, J.: Rubber hands ‘feel’touch that eyes see. Nature 391(6669), 756–756 (1998)

    Article  Google Scholar 

  8. Bouguila, L., Sato, M.: Virtual locomotion system for large-scale virtual environment. In: Proceedings IEEE Virtual Reality 2002, pp. 291–292. IEEE (2002)

  9. Bouguila, L., Sato, M., Hasegawa, S., Naoki, H., Matsumoto, N., Toyama, A., Ezzine, J., Maghrebi, D.: A new step-in-place locomotion interface for virtual environment with large display system. In: ACM SIGGRAPH 2002 conference abstracts and applications, pp. 63–63 (2002)

  10. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 205–216 (2016)

  11. Bruder, G., Steinicke, F., Hinrichs, K.H.: Arch-explore: A natural user interface for immersive architectural walkthroughs. In: 2009 IEEE Symposium on 3D User Interfaces, pp. 75–82. IEEE (2009)

  12. Burns, E., Razzaque, S., Panter, A.T., Whitton, M.C., McCallus, M.R., Brooks, F.P.: The hand is slower than the eye: A quantitative exploration of visual dominance over proprioception. In: IEEE Proceedings. VR 2005. Virtual Reality, 2005., pp. 3–10. IEEE (2005)

  13. Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th annual ACM symposium on User interface software and technology, pp. 213–221 (1997)

  14. Dominjon, L., Lécuyer, A., Burkhardt, J.M., Richard, P., Richir, S.: Influence of control/display ratio on the perception of mass of manipulated objects in virtual environments. In: IEEE Proceedings. VR 2005. Virtual Reality, 2005., pp. 19–25. IEEE (2005)

  15. Ernst, M.O.: A bayesian view on multimodal cue integration. Human Body Percept. Inside Out 131, 105–131 (2006)

    Google Scholar 

  16. Festl, F., Recktenwald, F., Yuan, C., Mallot, H.A.: Detection of linear ego-acceleration from optic flow. J. Vision 12(7), 10–10 (2012)

    Article  Google Scholar 

  17. Freitag, S., Rausch, D., Kuhlen, T.: Reorientation in virtual environments using interactive portals. In: 2014 IEEE symposium on 3D user interfaces (3DUI), pp. 119–122. IEEE (2014)

  18. Hollerbach, J.M., Xu, Y., Christensen, R., Jacobsen, S.C., et al.: Design specifications for the second generation sarcos treadport locomotion interface. In: Haptics Symposium, Proc. ASME Dynamic Systems and Control Division, vol. 69, pp. 1293–1298 (2000)

  19. Iwata, H., Yano, H., Fukushima, H., Noma, H.: Circulafloor [locomotion interface]. IEEE Computer Gr. Appl. 25(1), 64–67 (2005)

    Article  Google Scholar 

  20. Iwata, H., Yano, H., Nakaizumi, F.: Gait master: A versatile locomotion interface for uneven virtual terrain. In: Proceedings IEEE Virtual Reality 2001, pp. 131–137. IEEE (2001)

  21. Iwata, H., Yano, H., Tomioka, H.: Powered shoes. In: ACM SIGGRAPH 2006 Emerging technologies, pp. 28–es (2006)

  22. Kang, H., Lee, G., Han, J.: Visual manipulation for underwater drag force perception in immersive virtual environments. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 38–46. IEEE (2019)

  23. Kang, H., Lee, G., Kang, D.S., Kwon, O., Cho, J.Y., Choi, H.J., Han, J.: Jumping further: Forward jumps in a gravity-reduced immersive virtual environment. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 699–707. IEEE (2019)

  24. Kang, H., Lee, G., Kwon, S., Kwon, O., Kim, S., Han, J.: Flotation simulation in a cable-driven virtual environment–a study with parasailing. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2018)

  25. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  26. Kim, M., Cho, S., Tran, T.Q., Kim, S.P., Kwon, O., Han, J.: Scaled jump in gravity-reduced virtual environments. IEEE Trans. V. Computer Gr. 23(4), 1360–1368 (2017)

    Article  Google Scholar 

  27. Kohli, L.: Redirected touching(2013)

  28. Lai, C., McMahan, R.P., Hall, J.: March-and-reach: A realistic ladder climbing technique. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp. 15–18. IEEE (2015)

  29. Langbehn, E., Lubos, P., Steinicke, F.: Evaluation of locomotion techniques for room-scale vr: Joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference-Laval Virtual, pp. 1–9 (2018)

  30. Marchal, M., Lecuyer, A., Cirio, G., Bonnet, L., Emily, M.: Walking up and down in immersive virtual worlds: Novel interactive techniques based on visual feedback. In: 2010 IEEE Symposium on 3D User Interfaces (3DUI), pp. 19–26. IEEE (2010)

  31. Matsumoto, K., Ban, Y., Narumi, T., Tanikawa, T., Hirose, M.: Curvature manipulation techniques in redirection using haptic cues. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 105–108. IEEE (2016)

  32. Matsumoto, K., Narumi, T., Ban, Y., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: A visuo-haptic redirection system. In: The 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 1–9 (2019)

  33. McManus, E.A., Bodenheimer, B., Streuber, S., De La Rosa, S., Bülthoff, H.H., Mohler, B.J.: The influence of avatar (self and character) animations on distance estimation, object interaction and locomotion in immersive virtual environments. In: Proceedings of the ACM SIGGRAPH Symposium on applied perception in graphics and visualization, pp. 37–44 (2011)

  34. Nagao, R., Matsumoto, K., Narumi, T., Tanikawa, T., Hirose, M.: Infinite stairs: simulating stairs in virtual reality based on visuo-haptic interaction. In: ACM SIGGRAPH 2017 Emerging Technologies, pp. 1–2 (2017)

  35. Nagao, R., Matsumoto, K., Narumi, T., Tanikawa, T., Hirose, M.: Ascending and descending in virtual reality: simple and safe system using passive haptics. IEEE Trans. V. Computer Gr. 24(4), 1584–1593 (2018)

    Article  Google Scholar 

  36. Nilsson, N.C., Nordahl, R., Sikström, E., Turchet, L., Serafin, S.: Haptically induced illusory self-motion and the influence of context of motion. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 349–360. Springer (2012)

  37. Nilsson, N.C., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. V. Computer Gr. 20(4), 569–578 (2014)

    Article  Google Scholar 

  38. Noma, H., Sugihara, T., Miyasato, T.: Development of ground surface simulator for tel-e-merge system. In: Proceedings IEEE Virtual Reality 2000 (Cat. No. 00CB37048), pp. 217–224. IEEE (2000)

  39. Nordahl, R., Nilsson, N.C., Turchet, L., Serafin, S.: Vertical illusory self-motion through haptic stimulation of the feet. In: 2012 IEEE VR Workshop on Perceptual Illusions in Virtual Environments, pp. 21–26. IEEE (2012)

  40. Posner, M.I., Nissen, M.J., Klein, R.M.: Visual dominance: an information-processing account of its origins and significance. Psychol. Rev. 83(2), 157 (1976)

    Article  Google Scholar 

  41. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. Citeseer

  42. Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: EGVE 2, 123–130 (2002)

  43. Rietzler, M., Geiselhart, F., Gugenheimer, J., Rukzio, E.: Breaking the tracking: Enabling weight perception using perceivable tracking offsets. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

  44. Schmidt, D., Kovacs, R., Mehta, V., Umapathi, U., Köhler, S., Cheng, L.P., Baudisch, P.: Level-ups: Motorized stilts that simulate stair steps in virtual reality. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2157–2160 (2015)

  45. Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence: Teleop. Virtual Environ. 10(3), 266–281 (2001)

    Article  Google Scholar 

  46. Schwaiger, M., Thümmel, T., Ulbrich, H.: Cyberwalk: Implementation of a ball bearing platform for humans. In: International Conference on Human-Computer Interaction, pp. 926–935. Springer (2007)

  47. Souman, J.L., Giordano, P.R., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H., Luca, A.D., Bülthoff, H.H., Ernst, M.O.: Cyberwalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. (TAP) 8(4), 1–22 (2008)

    Google Scholar 

  48. Steinicke, F., Bruder, G., Hinrichs, K., Lappe, M., Ries, B., Interrante, V.: Transitional environments enhance distance perception in immersive virtual reality systems. In: Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, pp. 19–26 (2009)

  49. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. V. Computer Gr. 16(1), 17–27 (2009)

    Article  Google Scholar 

  50. Stoakley, R., Conway, M.J., Pausch, R.: Virtual reality on a wim: interactive worlds in miniature. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 265–272 (1995)

  51. Tan, D.S., Robertson, G.G., Czerwinski, M.: Exploring 3d navigation: combining speed-coupled flying with orbiting. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 418–425 (2001)

  52. Tong, X., Kitson, A., Salimi, M., Fracchia, D., Gromala, D., Riecke, B.E.: Exploring embodied experience of flying in a virtual reality game with kinect. In: 2016 IEEE International Workshop on Mixed Reality Art (MRA), pp. 5–6. IEEE (2016)

  53. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks Jr, F.P.: Walking> walking-in-place> flying, in virtual environments. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 359–364 (1999)

  54. Vasylevska, K., Kovács, B.I., Kaufmann, H.: Vr bridges: Simulating smooth uneven surfaces in vr. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 388–397. IEEE (2020)

  55. Zenner, A., Krüqer, A.: Estimating detection thresholds for desktop-scale hand redirection in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 47–55. IEEE (2019)

  56. Zhang, R., Kuhl, S.A.: Human sensitivity to dynamic rotation gains in head-mounted displays. In: Proceedings of the ACM Symposium on Applied Perception, pp. 71–74 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyeongYeop Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1F1A1076528).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M., Kang, H. Toward virtual stair walking. Vis Comput 37, 2783–2795 (2021). https://doi.org/10.1007/s00371-021-02179-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02179-2

Keywords

Navigation