Abstract
Monte Carlo (MC) path tracing causes a lot of noise on the rendered image at a low samples per pixel. Recently, with the help of inexpensive auxiliary buffers and the generative adversarial network (GAN), deep learning-based denoising MC rendering methods have been able to generate noise-free images with high perceptual quality in seconds. In this paper, we propose a novel GAN structure for denoising Monte Carlo renderings, called dual residual connection GAN. Our key insight is that the dual residual connections can improve the chance of the optimal feature selection and implicitly increase the number of potential interactions between modules. We also propose a multi-scale auxiliary features extraction method, aiming to make full use of the rich geometry and texture information of auxiliary buffers. Moreover, we adopt a spatial-adaptive block with the deformable convolution to help the network adapt to the variance in spatial texture and edge features. Compared with the state-of-the-art methods, our network has fewer parameters and less inference time, and the results surpass the previous in terms of visual effects and quantitative metrics.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 (2017)
Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J., Harvill, A., Sen, P., Derose, T., Rousselle, F.: Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36(4), 97–1 (2017)
Bitterli, B.: Rendering resources (2016). https://benedikt-bitterli.me/resources/
Bitterli, B., Rousselle, F., Moon, B., Iglesias-Guitián, J.A., Adler, D., Mitchell, K., Jarosz, W., Novák, J.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. In: Computer Graphics Forum, vol. 35, pp. 107–117. Wiley Online Library (2016)
Chaitanya, C.R.A., Kaplanyan, A.S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., Aila, T.: Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)
Chang, M., Li, Q., Feng, H., Xu, Z.: Spatial-adaptive network for single image denoising. arXiv:2001.10291 (2020)
Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)
Gharbi, M., Li, T.M., Aittala, M., Lehtinen, J., Durand, F.: Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Guo, J., Li, M., Li, Q., Qiang, Y., Hu, B., Guo, Y., Yan, L.Q.: Gradnet: unsupervised deep screened Poisson reconstruction for gradient-domain rendering. ACM Trans. Graph. (TOG) 38(6), 1–13 (2019)
Hasselgren, J., Munkberg, J., Salvi, M., Patney, A., Lefohn, A.: Neural temporal adaptive sampling and denoising. In: Computer Graphics Forum, vol. 39, pp. 147–155. Wiley Online Library (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645. Springer (2016)
Intel open image denoise. https://www.openimagedenoise.org/documentation.html
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Jo, Y., Park, J.: Sc-fegan: Face editing generative adversarial network with user’s sketch and color. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1745–1753 (2019)
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–150 (1986)
Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34(4), 122–1 (2015)
Keller, A., Fascione, L., Fajardo, M., Georgiev, I., Christensen, P., Hanika, J., Eisenacher, C., Nichols, G.: The path tracing revolution in the movie industry. In: ACM SIGGRAPH 2015 Courses, pp. 1–7 (2015)
Kettunen, M., Härkönen, E., Lehtinen, J.: Deep convolutional reconstruction for gradient-domain rendering. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
Kuznetsov, A., Kalantari, N.K., Ramamoorthi, R.: Deep adaptive sampling for low sample count rendering. In: Computer Graphics Forum, vol. 37, pp. 35–44. Wiley Online Library (2018)
Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T.: Noise2noise: learning image restoration without clean data. arXiv:1803.04189 (2018)
Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging the potential of paired operations for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7007–7016 (2019)
Lu, Y., Xie, N., Shen, H.T.: DMCR-GAN: Adversarial denoising for Monte Carlo renderings with residual attention networks and hierarchical features modulation of auxiliary buffers. In: SIGGRAPH Asia 2020 Technical Communications, pp. 1–4 (2020)
Meng, X., Zheng, Q., Varshney, A., Singh, G., Zwicker, M.: Real-time Monte Carlo denoising with the neural bilateral grid (2020)
Munkberg, J., Hasselgren, J.: Neural denoising with layer embeddings. In: Computer Graphics Forum, vol. 39, pp. 1–12. Wiley Online Library (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Vicini, D., Adler, D., Novák, J., Rousselle, F., Burley, B.: Denoising deep Monte Carlo renderings. In: Computer Graphics Forum, vol. 38, pp. 316–327. Wiley Online Library (2019)
Vogels, T., Rousselle, F., McWilliams, B., Röthlin, G., Harvill, A., Adler, D., Meyer, M., Novák, J.: Denoising with kernel prediction and asymmetric loss functions. ACM Trans. Graph. (TOG) 37(4), 1–15 (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Wong, K.M., Wong, T.T.: Deep residual learning for denoising Monte Carlo renderings. Comput. Vis. Med. 5(3), 239–255 (2019)
Xu, B., Zhang, J., Wang, R., Xu, K., Yang, Y.L., Li, C., Tang, R.: Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Trans. Graph. 38(6), 224–1 (2019)
Yang, X., Wang, D., Hu, W., Zhao, L.J., Yin, B.C., Zhang, Q., Wei, X.P., Fu, H.: Demc: A deep dual-encoder network for denoising Monte Carlo rendering. J. Comput. Sci. Technol. 34(5), 1123–1135 (2019)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.: Learning enriched features for real image restoration and enhancement. arXiv:2003.06792 (2020)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., Yoon, S.E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. In: Computer Graphics Forum, vol. 34, pp. 667–681. Wiley Online Library (2015)
Funding
This work is part of the research supported by the National Nature Science Foundation of China under Grant No. 61602088, No. This work is part of the research supported by the Sichuan Provincial NSFC (No. 2018JY0528), the Fundamental Research Funds for the Central Universities No. Y03019023601008011, the interactive Technology Research Fund of the Research Center for Interactive Technology Industry, School of Economics and Management, Tsinghua University (No. RCITI2021T006) and sponsored by TiMi L1 Studio of Tencent corporation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lu, Y., Fu, S., Zhang, X.H. et al. Denoising Monte Carlo renderings via a multi-scale featured dual-residual GAN. Vis Comput 37, 2513–2525 (2021). https://doi.org/10.1007/s00371-021-02204-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-021-02204-4