Skip to main content
Log in

Physically based modeling and rendering of avalanches

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Avalanche is a natural disaster in the snow-covered mountainous area in winter, which may cause great disasters to human life and property. It is also a danger for skiers and climbers. This paper presents a new physically based algorithm to simulate the dynamic avalanches under position-based dynamics framework. To realistically simulate avalanches’ dynamic characteristics, we introduce the Bingham plastic model from geodynamics to model snow flow motion in avalanches. The interaction between snow flow in the avalanche and the surrounding objects is simulated by a level set-based two-way fluid–solid coupling model. We also propose static and kinetic friction mixed model to determine the accumulated transition of the avalanche. To create an avalanche scene with more realistic details, we employ an aerodynamics-based snow drag force model to generate snow fog effect. Finally, by choosing different criterion shear rate and friction parameters, different kinds of wet and dry avalanche scenes are realistically rendered. Compared with the real photographs of avalanches, our simulated results are quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Numerical simulation of snow avalanches as a Bingham fluid flow using sph method. River Flow 2014, 1581–1587 (2014)

    Google Scholar 

  2. Alduán, I., Otaduy, M.A.: Sph granular flow with friction and cohesion. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32 (2011)

  3. Bender, J., Koschier, D., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Comput. Graph. 44, 1–10 (2014)

    Article  Google Scholar 

  4. Christoph Gissler Andreas Henne, S.B.A.P., Teschner, M.: An implicit compressible sph solver for snow simulation. ACM Trans. Graph. (TOG) 39(4), 1–16 (2020)

    Google Scholar 

  5. Cornel, D., Buttingerkreuzhuber, A., Konev, A., Horvath, Z., Wimmer, M., Heidrich, R., Waser, J.: Interactive visualization of flood and heavy rain simulations. Comput. Graph. Forum 38(3), 25–39 (2019)

    Article  Google Scholar 

  6. Chudziak, J., Kočan, Z.: Functional equations of the Goła̧b–Schinzel type on a cone. Monatsh. Math. 178, 521–537 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dent, J., Lang, T.: A biviscous modified bingham model of snow avalanche motion. Ann. Glaciol. 4, 42–46 (1983)

    Article  Google Scholar 

  8. Fearing, P.: Computer modelling of fallen snow. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 37–46 (2000)

  9. Gissler, C., Band, S., Peer, A., Ihmsen, M., Teschner, M.: Generalized drag force for particle-based simulations. Comput. Graph. 69, 1–11 (2017)

    Article  Google Scholar 

  10. Guillaume Cordonnier Pierre Ecormier, E.G.J.G.B.B., Cani, M.P.: Interactive generation of time-evolving, snow-covered landscapes with avalanches. Comput. Graph. Forum 37(2), 497–509 509 (2018)

    Article  Google Scholar 

  11. He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Vis. Comput. Graph. 24(9), 2589–2599 (2017)

    Article  Google Scholar 

  12. Huang, N., Sang, J., Han, K.: A numerical simulation of the effects of snow particle shapes on blowing snow development. J. Geophys. Res. Atmosph. 116, D22 (2011)

    Article  Google Scholar 

  13. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140 (2004)

  14. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  15. Miller, G., Pearce, A.: Globular dynamics: a connected particle system for animating viscous fluids. Comput. Graph. 13(3), 305–309 (1989)

    Article  Google Scholar 

  16. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 141–151 (2004)

  17. Nishita, T., Iwasaki, H., Dobashi, Y., Nakamae, E.: A modeling and rendering method for snow by using metaballs. In: Computer Graphics Forum, vol. 16, pp. C357–C364. Wiley, New York (1997)

  18. Oda, K., Moriguchi, S., Kamiishi, I., Yashima, A., Sawada, K., Sato, A.: Simulation of a snow avalanche model test using computational fluid dynamics. Ann. Glaciol. 52(58), 57–64 (2011)

    Article  Google Scholar 

  19. Sifakis, E., Barbic, J.: Fem simulation of 3d deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: Acm Siggraph 2012 Courses, pp. 1–50 (2012)

  20. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013)

    Article  Google Scholar 

  21. Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simulation. Vis. Comput 22(5), 315–323 (2006)

    Article  Google Scholar 

  22. Wang, C., Zhang, Q., Kong, F., Gao, Y.: Fast animation of debris flow with mixed adaptive grid refinement. Comput. Anim. Virtual Worlds 26(1), 3–14 (2015)

    Article  Google Scholar 

  23. Xingyue Li Betty Sovilla, C.J., Gaume, J.: The mechanical origin of snow avalanche dynamics and flow regime transitions. The Cryosphere 14, 3381C–3398 (2020)

    Article  Google Scholar 

  24. Tsuda, Y., Yue, Y.Y.D.T.N.: Visual simulation of mixed-motion avalanches with interactions between snow layers. Vis. Comput. 26, 883C–891 (2010)

    Article  Google Scholar 

  25. Zhang, S., Kong, F., Li, C., Wang, C., Qin, H.: Hybrid modeling of multiphysical processes for particle-based volcano animation. Comput. Anim. Virtual Worlds 28, 3–4 (2017)

    Google Scholar 

  26. Zhao, J., Chen, Y., Zhang, H., Xia, H., Wang, Z., Peng, Q.: Physically based modeling and animation of landslides with mpm. Vis. Comput. 35(9), 1223–1235 (2019)

    Article  Google Scholar 

  27. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)

    Article  Google Scholar 

Download references

Funding

Funding was provided by 863 Program of China (No. 2015AA016404), National Key R&D Program of China (No. 2017YFB1002703) and Natural Science Foundation of China (No. U1736109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangye Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, Y., Zhang, H. et al. Physically based modeling and rendering of avalanches. Vis Comput 37, 2619–2629 (2021). https://doi.org/10.1007/s00371-021-02215-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02215-1

Keywords