Skip to main content
Log in

PRNet: polar regression network for medical image segmentation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

High-performance segmentation of medical images, though important for automatic clinical diagnosis, remains a challenging problem. In this paper, we propose a novel polar regression network (PRNet) for the segmentation of oval-shaped targets in medical images. Through polar representation, the segmentation problem is formulated and decomposed into two sub-problems of center map estimation and ray length regression. The center map estimation is supervised by the probability center map, which is pre-generated by the contour-based algorithm. The ray length regression further leverages the center-attention polar loss and projection distance loss, in order to emphasize pixels in high probability in the center mask and capitalize on the implicit shape information. Experimental results demonstrate the effectiveness of our approach on the segmentation of oval targets in medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. (2018) arXiv preprint arXiv:1802.06955

  2. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A., Cetin, I., Lekadir, K., Camara, O., Ballester, M.A.G., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Bi, L., Feng, D., Kim, J.: Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis. Comput. 34(6), 1043–1052 (2018)

    Article  Google Scholar 

  5. Chen, J., Yan, K., Zhang, Y.D., Tang, Y., Xu, X., Sun, S., Liu, Q., Huang, L., Xiao, J., Yuille, A.L., et al.: Sequential learning on liver tumor boundary semantics and prognostic biomarker mining. (2021) arXiv preprint arXiv:2103.05170

  6. Cheng, Z., Qu, A., He, X.: Contour-aware semantic segmentation network with spatial attention mechanism for medical image. Vis. Comput. pp 1–14 (2021)

  7. Dong, S., Zhao, J., Zhang, M., Shi, Z., Deng, J., Shi, Y., Tian, M., Zhuo, C.: Deu-net: Deformable u-net for 3D cardiac mri video segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 98–107 (2020)

  8. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)

    Article  Google Scholar 

  9. Ghelich Oghli, M., Mohammadzadeh, M., Mohammadzadeh, V., Kadivar, S., Mohammad Zadeh, A.: Left ventricle segmentation using a combination of region growing and graph based method. Iran. J. Radiol. 14, 2 (2017)

    Google Scholar 

  10. Lei, L., Xi, F., Chen, S., Liu, Z.: Iterated graph cut method for automatic and accurate segmentation of finger-vein images. Appl. Intell. pp 1–17 (2020)

  11. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41(1), 1–10 (2011)

    Article  Google Scholar 

  12. Li, Y., Cao, G., Yu, Q., Li, X.: Active contours driven by non-local gaussian distribution fitting energy for image segmentation. Appl. Intell. 48(12), 4855–4870 (2018)

    Article  Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3431–3440 (2015)

  14. Meng, Y., Meng, W., Gao, D., Zhao, Y., Yang, X., Huang, X., Zheng, Y.: Regression of instance boundary by aggregated CNN and GCN. In: European Conference on Computer Vision, Springer, pp 190–207 (2020)

  15. Nosrati, M.S., Hamarneh, G.: Incorporating prior knowledge in medical image segmentation: a survey. arXiv preprint arXiv:1607.01092 (2016)

  16. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B. et al.: Attention u-net: Learning where to look for the pancreas. (2018) arXiv preprint arXiv:1804.03999

  17. Orlando, J.I., Fu, H., Breda, J.B., van Keer, K., Bathula, D.R., Diaz-Pinto, A., Fang, R., Heng, P.A., Kim, J., Lee, J., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  18. Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing. Med. Imaging 2001: Image Process. Int. Soc. Opt. Photonics 4322, 1337–1346 (2001)

    Article  MATH  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp 234–241 (2015)

  20. Sharma, N., Aggarwal, L.M.: Automated medical image segmentation techniques. J. Med. Phys./Assoc. Med. Physicists India 35(1), 3 (2010)

    Google Scholar 

  21. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B. et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. (2019) arXiv preprint arXiv:1902.09063

  22. Sun, J., Darbehani, F., Zaidi, M., Wang, B.: Saunet: shape attentive u-net for interpretable medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp 797–806 (2020)

  23. Tan, L.K., Liew, Y.M., Lim, E., McLaughlin, R.A.: Cardiac left ventricle segmentation using convolutional neural network regression. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE, pp 490–493 (2016)

  24. Tan, L.K., Liew, Y.M., Lim, E., McLaughlin, R.A.: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med. Image Anal. 39, 78–86 (2017)

    Article  Google Scholar 

  25. Tang, P., Zu, C., Hong, M., Yan, R., Peng, X., Xiao, J., Wu, X., Zhou, J., Zhou, L., Wang, Y.: Da-dsunet: Dual attention-based dense su-net for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing 435, 103–113 (2021)

    Article  Google Scholar 

  26. Tian, J., Wu, K., Ma, K., Cheng, H., Gu, C.: Exploration of different attention mechanisms on medical image segmentation. In: International Conference on Neural Information Processing, Springer, pp 598–606 (2019)

  27. Tong, H., Fang, Z., Wei, Z., Cai, Q., Gao, Y.: Sat-net: a side attention network for retinal image segmentation. Appl. Intell. pp 1–11 (2021)

  28. Wang, D., Hu, G., Lyu, C.: Frnet: an end-to-end feature refinement neural network for medical image segmentation. Vis. Comput. pp 1–12 (2020)

  29. Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., Luo, P.: Polarmask: Single shot instance segmentation with polar representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12193–12202 (2020)

  30. Xie, E., Wang, W., Ding, M., Zhang, R., Luo, P.: Polarmask++: Enhanced polar representation for single-shot instance segmentation and beyond. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

  31. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199–209 (1997)

    Article  Google Scholar 

  32. Zhou, Y., Shi, W.R., Chen, W., Yl, Chen, Li, Y., Tan, L.W., Chen, D.Q.: Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac ct images. Neurocomputing 156, 199–210 (2015)

    Article  Google Scholar 

  33. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, pp 3–11 (2018)

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Quan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The experimental samples used in this paper are all collected from the public database.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Quan, H. & Wu, M. PRNet: polar regression network for medical image segmentation. Vis Comput 39, 87–98 (2023). https://doi.org/10.1007/s00371-021-02315-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02315-y

Keywords

Navigation