Skip to main content
Log in

Rotation robust non-rigid point set registration with Bayesian student’s t mixture model

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

A Correction to this article was published on 01 February 2023

This article has been updated

Abstract

Aiming to improve the performance of non-rigid point set registration, this paper proposes a probabilistic method with student’s t mixture model (SMM) under the Bayesian inference framework. In the proposed method, non-rigid point set registration is formulated as a probabilistic density estimation problem with SMM in Bayesian manner. In order to improve the robustness to rotation degradation, we consider the rotation transformation in modeling non-rigid displacement. Then, the hierarchical Bayesian model of non-rigid point set registration is constructed, and approximate posteriors of model parameters are derived by the variational Bayesian Expectation Maximization update rules, which can provide the uncertainty measurements of parameters. For those parameters without priors imposed, the updating formulae are obtained by directly maximizing variational lower bound. Finally, an empirical coarse-to-fine algorithm is designed to perform non-rigid point set registration process. The experimental results demonstrate that the proposed method can achieve higher matching performance compared with other several state-of-the-art registration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9

Similar content being viewed by others

Change history

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep/.

References

  1. Zhu, H., Guo, B., Zou, K., Li, Y.F., et al.: A review of point set registration: from pairwise registration to groupwise registration. Sensors. 19(5), 1191 (2019). https://doi.org/10.3390/s19051191

    Article  Google Scholar 

  2. Goshtasby, A.A.: 2-D and 3-D image registration: for medical, remote sensing, and industrial applications. Wiley-Interscience, Dayton (2005)

    Google Scholar 

  3. Moigne, J.L., Netanyahu, N.S., Eastman, R.D.: Image registration for remote sensing. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  4. Tondewad, M.P.S., Dale, M.: Review and discussion remote sensing image registration methodology. Procedia Comput Sci 171, 2390–2399 (2020). https://doi.org/10.1016/j.procs.2020.04.259

    Article  Google Scholar 

  5. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging. 32(7), 1153–1190 (2013). https://doi.org/10.1109/TMI.2013.2265603

    Article  Google Scholar 

  6. Oliveira, F.P.M., Tavares, J.M.: Medical image registration: a review. Comput. Method Biomec. 17(2), 73–93 (2014). https://doi.org/10.1080/10255842.2012.670855

    Article  Google Scholar 

  7. Folgoc, L., Delingette, H., Criminisi, A., Ayache, N.: Sparse Bayesian registration of medical images for self-tuning of parameters and spatially adaptive parametrization of displacements. Med. Image. Anal. 36, 79–97 (2017). https://doi.org/10.1016/j.media.2016.09.008

    Article  Google Scholar 

  8. Tam, G.K.L., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., et al.: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19(7), 1199–1217 (2013). https://doi.org/10.1109/TVCG.2012.310

    Article  Google Scholar 

  9. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern. Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  10. Chui, H.L.: Non-rigid point matching: algorithms, extensions and applications. PhD Dissertation, Yale University, New Haven (2001)

  11. Chui, H.L., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image. Und. 89(2–3), 114–141 (2003). https://doi.org/10.1016/S1077-3142(03)00009-2

    Article  MATH  Google Scholar 

  12. Myronenko, A., Song, X.B.: Point set registration: coherent point drift. IEEE Trans. Pattern. Anal. Mach. Intell. 32(12), 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  13. Qu, H.B., Chen, X., Wang, S.T., Yu, M.: Probabilistic model for robust affine and non-rigid point set matching. IEEE Trans. Pattern. Anal. Mach. Intell. 39(2), 371–384 (2017). https://doi.org/10.1109/TPAMI.2016.2545659

    Article  Google Scholar 

  14. Hirose, O.: A Bayesian formulation of coherent point drift. IEEE Trans. Pattern. Anal. Mach. Intell. 43(7), 2269–2286 (2021). https://doi.org/10.1109/TPAMI.2020.2971687

    Article  Google Scholar 

  15. Mclachlan, G.J., Peel, D.: Finite mixture model. John Wiley & Sons Inc, Chichester (2000)

    Book  MATH  Google Scholar 

  16. Min, Z., Meng, Q.H.: Robust and accurate nonrigid point set registration algorithm to accommodate anisotropic positional localization error based on coherent point drift. IEEE Trans. Autom. Sci. Eng. (2020). https://doi.org/10.1109/TASE.2020.3027073

    Article  Google Scholar 

  17. Min, Z., Wang, J.L., Pan, J., Meng, Q.H.: Generalized 3-D point set registration with hybrid mixture models for computer-assisted orthopedic surgery: from Isotropic to Anisotropic Positional Error. IEEE Trans. Autom. Sci. Eng. 99, 1–13 (2020). https://doi.org/10.1109/TASE.2020.3014420

    Article  Google Scholar 

  18. Min, Z., Zhu, D.L., Ren, H.L., Meng, Q.H.: Feature-guided nonrigid 3-D point set registration framework for image-guided liver surgery: from isotropic positional noise to anisotropic positional noise. IEEE Trans. Autom. Sci. Eng. 18(2), 471–483 (2020). https://doi.org/10.1109/TASE.2020.3001207

    Article  Google Scholar 

  19. Zhang, P.P., Qiao, Y., Wang, S.Z., Yang, J., et al.: A robust coherent point drift approach based on rotation invariant shape context. Neurocomputing 219(5), 455–473 (2017). https://doi.org/10.1016/j.neucom.2016.09.058

    Article  Google Scholar 

  20. Yang, L.J., Tian, Z., Zhao, W., Wen, J.H., et al.: Robust image registration using adaptive coherent point drift method. J. Appl. Remote. Sens. 10(2), 025014 (2016). https://doi.org/10.1117/1.JRS.10.025014

    Article  Google Scholar 

  21. Yang, G.Q., Li, R., Liu, Y.J., Wang, J.: A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-02037-7

    Article  Google Scholar 

  22. Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern. Anal. Mach. Intell. 33(8), 1633–1645 (2011). https://doi.org/10.1109/TPAMI.2010.223

    Article  Google Scholar 

  23. Ma, J.Y., Zhao, J., Tian, J.W., Bai, X., et al.: Regularized vector field learning with sparse approximation for mismatch removal. Pattern Recognit. 46(12), 3519–3532 (2013). https://doi.org/10.1016/j.patcog.2013.05.017

    Article  MATH  Google Scholar 

  24. Ma, J.Y., Zhao, J., Tian, J.W., Yuille, A.L., et al.: Robust point matching via vector field consensus. IEEE Trans. Image. Process. 23(4), 1706–1721 (2014). https://doi.org/10.1109/TIP.2014.2307478

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, J.Y., Qiu, W.C., Zhao, J., Ma, Y., et al.: Robust L2E estimation of transformation for non-rigid registration. IEEE. Trans. Signal Process. 63(5), 1115–1129 (2015). https://doi.org/10.1109/TSP.2014.2388434

    Article  MathSciNet  MATH  Google Scholar 

  26. Beal, M.J.: Variational algorithms for approximate Bayesian inference. PhD Dissertation, University of London, London (2003)

  27. Bishop, C.M.: Pattern recognition and machine learning (information science and statistics). Springer, New York (2006)

    MATH  Google Scholar 

  28. Svensen, M., Bishop, C.M.: Robust Bayesian mixture modelling. Neurocomputing 64, 235–252 (2004). https://doi.org/10.1016/j.neucom.2004.11.018

    Article  Google Scholar 

  29. Subrahmanya, N., Shin, Y.: A variational Bayesian framework for group feature selection. Int. J. Mach. Learn. Cyb. 4, 609–619 (2013). https://doi.org/10.1007/s13042-012-0121-9

    Article  Google Scholar 

  30. Qu, H.B., Chen, X., Wang, S.T., Yu, M.: Forward affine point set matching under variational Bayesian framework. Acta. Automatica. Sinica. 41(8), 1482–1494 (2015). https://doi.org/10.1016/S1874-1029(15)30001-X

    Article  Google Scholar 

  31. Peel, D., Mclachlan, G.J.: Robust mixture modelling using the t distribution. Stat. Comput. 10, 339–348 (2000). https://doi.org/10.1023/A:1008981510081

    Article  Google Scholar 

  32. Zhou, Z.Y., Zheng, J., Dai, Y.K., Zhou, Z.: Robust non-rigid point set registration using student’s-t mixture model. PLoS ONE 9(3), e91381 (2014). https://doi.org/10.1371/journal.pone.0091381

    Article  Google Scholar 

  33. Liang, L., He, Q.Q., Cao, H.L., Yang, Y., Chen, X.F., Lin, G., Han, M.: Dual-features student-t distribution mixture model based remote sensing image registration. IEEE Geosci. Remote Sens. Lett. (2021). https://doi.org/10.1109/LGRS.2020.3047855

    Article  Google Scholar 

  34. Yang, L.J., Tian, Z., Wen, J.H., Yan, W.D.: Adaptive non-rigid point set registration based on variational Bayesian. J. Northwestern. Polytech. Univ. 36(5), 942–948 (2018). https://doi.org/10.1051/jnwpu/20183650942

    Article  Google Scholar 

  35. He, Q.Q., Zhou, J., Xu, S.J., Yang, Y.: Adaptive hierarchical probabilistic model using structured variational inference for point set registration. IEEE. Trans. Fuzzy. Syst. 28(11), 2784–2798 (2020). https://doi.org/10.1109/TFUZZ.2020.2974433

    Article  Google Scholar 

  36. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., et al.: Learning graph matching. IEEE Trans. Pattern. Anal. Mach. Intell. 31(6), 1048–1058 (2009). https://doi.org/10.1109/TPAMI.2009.28

    Article  Google Scholar 

  37. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Analysis of two-dimensional non-rigid shapes. Int. J. Comput. Vis. 78(1), 67–88 (2008). https://doi.org/10.1007/s11263-007-0078-4

    Article  MATH  Google Scholar 

  38. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer, New York (2009)

    Book  MATH  Google Scholar 

  39. Impens, C.: Stirling’s series made easy. Am. Math. Mon. 110(8), 730–735 (2003). https://doi.org/10.1080/00029890.2003.11920013

    Article  MathSciNet  MATH  Google Scholar 

  40. Baldacchino, T., Worden, K., Rowson, J.: Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution. Mech. Syst. Signal Process. 85, 977–992 (2017). https://doi.org/10.1016/j.ymssp.2016.08.045

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, CHD (300102129108, 300102129107), National Nature Science Foundation of China (11801438, 12001057) and Natural Science Foundation of Shaanxi Province of China (2021JQ-218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Fundamental Research Funds for the Central Universities, CHD (300102129108, 300102129107), National Nature Science Foundation of China (11801438, 12001057) and Natural Science Foundation of Shaanxi Province of China (2021JQ-218).

The original online version of this article was revised: The names of the affiliations were not correct.

Appendix

Appendix

In this section, the posterior distributions of some model parameters are listed successively according to the VBEM update rules in Eq. (13) and Eq. (14).

  1. (1)

    Indicator variables \({\bf Z}\).

The approximate distribution of \(Z\) is expressed as follows:

$$ q\left( {z_{nm} { = }1} \right){ = }\frac{{\left\langle {\pi_{m} } \right\rangle \left\langle {\Lambda_{m} } \right\rangle^{\frac{D}{2}} \Gamma \left( {\frac{{\upsilon_{m} { + }D}}{2}} \right)}}{{\left( {\upsilon_{m} \pi } \right)^{\frac{D}{2}} \Gamma \left( {\frac{{\upsilon_{m} }}{2}} \right)}}\left( {1{ + }\frac{{\varpi_{nm} }}{{\upsilon_{m} }}} \right)^{{ - \frac{{\upsilon_{m} { + }D}}{2}}} {,}\forall n{,}\forall m, $$
(26)

where \( \varpi _{{nm}} = \Big\langle \Lambda _{m} \big( {\bf x}_{n} - s{\bf Ry}_{m} - s{\bf Rv}_{m} - {\bf t} \big)^{T} ({\bf x}_{n} - s{\bf Ry}_{m} - s{\bf Rv}_{m} - {\bf t}) \Big\rangle \). After normalization, we obtain

$$ \left\langle {z_{nm} } \right\rangle { = }\frac{{q\left( {z_{nm} { = }1} \right)}}{{\sum\nolimits_{m = 1}^{M} {q\left( {z_{nm} { = }1} \right)} }}{,}\forall n{,}\forall m. $$
(27)
  1. (2)

    Latent variables U.

Under the condition \(z_{nm} { = }1\), the posterior of each element \(u_{nm}\) of \({\bf U}\) is a Gamma distribution, where the shape parameter and the scale parameter are given as follows:

$$ \alpha_{nm} { = }\frac{{v_{m} { + }D}}{2}, $$
(28)
$$ \beta_{nm} { = }\frac{{v_{m} { + }\varpi_{nm} }}{2}. $$
(29)
  1. (3)

    Mixing coefficient \(\boldsymbol{\pi}\)

The posterior of mth element of \(\boldsymbol{\pi}\) is updated according to \(\xi_{m}\), which is expressed as follows:

$$ \xi_{m} = \sum\nolimits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle } { + }\xi_{0}^{m} . $$
(30)

Next, the updating equation of degree of freedom is derived by directly maximizing the variational lower bound \({\mathcal{L}}\left( q \right)\).

  1. (4)

    Degrees of freedom \(\upsilon\).

By setting the derivatives of \({\mathcal{L}}\left( q \right)\) with respect to degree of freedom to zero, we have the following (independent) nonlinear equation:

$$ \begin{aligned} &\ln \left( {\frac{{\upsilon_{m} }}{2}} \right){ + }1 - \psi \left( {\frac{{\upsilon_{m} }}{2}} \right)\\ &\quad { + }\frac{1}{{\sum\nolimits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle } }}\sum\nolimits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle \left( {\left\langle {\ln u_{nm} } \right\rangle - \left\langle {u_{nm} } \right\rangle } \right)} = \,0. \end{aligned}$$
(31)

In order to avoid solving the nonlinear equations, we adopt the Stirling’s formula [39] for \(\ln \Gamma \left( \cdot \right)\), namely \(\ln \Gamma \left( z \right){ = }z\ln z - z{ + }{{\ln \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } z}} \right. \kern-\nulldelimiterspace} z}} \right)} \mathord{\left/ {\vphantom {{\ln \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } z}} \right. \kern-\nulldelimiterspace} z}} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\), to obtain the closed form of degree of freedom parameters as suggested by Baldacchino et al. [40]. By the relationship that \(\psi \left( z \right){ = }{{\partial \ln \Gamma \left( z \right)} \mathord{\left/ {\vphantom {{\partial \ln \Gamma \left( z \right)} {\partial z}}} \right. \kern-\nulldelimiterspace} {\partial z}}\), we have the resulting updating equation:

$$\begin{aligned} \upsilon_{m} &= - \frac{1}{{1{ + }\frac{1}{{\sum\nolimits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle } }}\sum\nolimits_{{n = 1}}^{N} {\left\langle {z_{nm} } \right\rangle \left( {\left\langle {\ln u_{nm} } \right\rangle - \left\langle {u_{nm} } \right\rangle } \right)} }},\\ m &= 1, \ldots ,M. \end{aligned}$$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, Y., Wang, C. et al. Rotation robust non-rigid point set registration with Bayesian student’s t mixture model. Vis Comput 39, 367–379 (2023). https://doi.org/10.1007/s00371-021-02335-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02335-8

Keywords

Navigation