Skip to main content
Log in

Hyperparameter tuning of convolutional neural networks for building construction image classification

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Deep Learning models have important applications in image processing. However, one of the challenges in this field is the definition of hyperparameters. Thus, the objective of this work is to propose a rigorous methodology for hyperparameter tuning of Convolutional Neural Network for building construction image classification, especially in roofs structure analysis. For this, the HyperTuningSK algorithm was developed, intended to create recommendation rankings for two hyperparameters: learning rate and optimizer. The approach uses concepts from the statistical design of experiments, such as Analysis of Variance and the Scott–Knott clustering algorithm. In addition, the adopted database includes images of inspections on buildings roofs made with unmanned aerial vehicles. The images are divided into two classes: (i) roofs with clean gutters and (ii) roofs with dirty gutters. The methods recommended by the HyperTuningSK algorithm achieved good results in comparison to the hyperparameters adopted in the literature. In this respect, adagrad015 achieved the highest average values of accuracy in the validation (\(100\%\)) and testing steps (\(90\%\)) for Convolutional Neural Network architecture with 12 layers. In addition, the hyperparameters recommended by the HyperTuningSK algorithm achieved the best test results for other two literature architectures: Densenet121 (85.7%) and VGG16 (84.4%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.dji.com/br/phantom-4.

  2. https://keras.io/api/optimizers/adam/.

References

  1. Abbass, M., Kwon, K.-C., Kim, N., Abdelwahab, S., El-Samie, F., Khalaf, A.: Efficient object tracking using hierarchical convolutional features model and correlation filters. Vis. Comput. 37(4), 831–842 (2021)

    Article  Google Scholar 

  2. Agrawal, A., Mittal, N.: Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Vis. Comput. 36(2), 405–412 (2020)

    Article  Google Scholar 

  3. Aguiar, G.J., Mantovani, R.G., Mastelini, S.M., de Carvalho, A.C., Campos, G.F., Junior, S.B.: A meta-learning approach for selecting image segmentation algorithm. Pattern Recogn. Lett. 128, 480–487 (2019)

    Article  Google Scholar 

  4. Bang, S., Park, S., Kim, H., Kim, H.: Encoder-decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civil Infrast. Eng. 34(8), 713–727 (2019)

    Article  Google Scholar 

  5. Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 160(901), 268–282 (1937)

  6. Basgalupp, M.P., Barros, R.C., de Sá, A.G., Pappa, G.L., Mantovani, R.G., de Carvalho, A., Freitas, A. A.: An extensive experimental evaluation of automated machine learning methods for recommending classification algorithms. Evolut. Intell., pp 1–20. Article in Press (2020)

  7. Bayoudh, K., Knani, R., Hamdaoui, F., Mtibaa, A.: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. Vis. Comput. pp. 1–32. Article in Press (2021)

  8. Ben Fredj, H., Bouguezzi, S., Souani, C.: Face recognition in unconstrained environment with cnn. Vis. Comput. 37(2), 217–226 (2021)

    Article  Google Scholar 

  9. Bhosle, K., Musande, V.: Evaluation of deep learning cnn model for land use land cover classification and crop identification using hyperspectral remote sensing images. J. Indian Soc. Remote Sens. 47(11), 1949–1958 (2019)

    Article  Google Scholar 

  10. Braun, A., Borrmann, A.: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning. Autom. Constr. 106, 1–12 (2019)

    Article  Google Scholar 

  11. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  12. Chen, S., Wu, J., Chen, X.: Deep reinforcement learning with model-based acceleration for hyperparameter optimization. November, 170–177 (2019)

  13. Chen, Z., Hu, Z., Sheng, B., Li, P., Kim, J., Wu, E.: Simplified non-locally dense network for single-image dehazing. Vis. Comput. 36(10–12), 2189–2200 (2020)

    Article  Google Scholar 

  14. Cheng, S., Lai, H., Wang, L., Qin, J.: A novel deep hashing method for fast image retrieval. Vis. Comput. 35(9), 1255–1266 (2019)

    Article  Google Scholar 

  15. Chollet, F., Allaire, J.J.: Deep learning with R. Manning (2018). (Publications)

  16. Conceição, J., Poça, B., De Brito, J., Flores-Colen, I., Castelo, A.: Inspection, diagnosis, and rehabilitation system for flat roofs. J. Perform. Constr. Facil. 31(6), 04017100 (2017)

    Article  Google Scholar 

  17. Czerniawski, T., Leite, F.: Automated segmentation of rgb-d images into a comprehensive set of building components using deep learning. Adv. Eng. Inform. 45, 101131 (2020)

  18. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Elgendy, M.: Deep learning for vision systems. Manning (2020). (Publications)

  20. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in neural information processing systems 28, pp. 2962–2970. Curran Associates Inc (2015)

  21. Garcez, N., Lopes, N., de Brito, J., Silvestre, J.: System of inspection, diagnosis and repair of external claddings of pitched roofs. Constr. Build. Mater. 35, 1034–1044 (2012)

    Article  Google Scholar 

  22. Gökstorp, S.G.E., Breckon, T.P.: Temporal and non-temporal contextual saliency analysis for generalized wide-area search within unmanned aerial vehicle (uav) video. Vis. Comput. 1–8 (2021)

  23. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)

    Article  Google Scholar 

  24. Guo, J., Wang, Q., Li, Y.: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification. Comput. Aided Civil Infrast. Eng. 36(3), 302–317 (2021)

    Article  Google Scholar 

  25. Guo, J., Wang, Q., Li, Y., Liu, P.: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network. Comput. Aided Civil Infrast. Eng. 35(12), 1403–1418 (2020)

    Article  Google Scholar 

  26. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1533–1540

  27. Hertel, L., Collado, J., Sadowski, P., Ott, J., Baldi, P.: Sherpa: Robust hyperparameter optimization for machine learning. SoftwareX 12, 100591 (2020)

  28. Hijam, D., Saharia, S.: On developing complete character set meitei mayek handwritten character database. Vis. Comput. pp. 1–15. Article in Press (2021)

  29. Hu, Y.-Q., Yu, Y.: A technical view on neural architecture search. Int. J. Mach. Learn. Cybern. 11(4), 795–811 (2020)

    Article  MathSciNet  Google Scholar 

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

  31. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of International Conference on Machine Learning 2014 (ICML 2014), pp. 754–762 (2014)

  32. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods. Springer. In press, available, Systems, Challenges (2019). http://automl.org/book

  33. Jaafra, Y., Laurent, J.L., Deruyver, A., Naceur, M.S.: Reinforcement learning for neural architecture search: a review. Image Vis. Comput. 89, 57–66 (2019)

    Article  Google Scholar 

  34. Jelihovschi, E.G., Faria, J.C., Allaman, I.B.: Scottknott: a package for performing the scott-knott clustering algorithm in r. TEMA - SBMAC 15(1), 3–17 (2014)

    Article  MathSciNet  Google Scholar 

  35. Kim, B., Yuvaraj, N., Preethaa, K.S., Pandian, R.A.: Surface crack detection using deep learning with shallow cnn architecture for enhanced computation. Neural Comput. Appl. 33(15), 9289–9305 (2021)

    Article  Google Scholar 

  36. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014)

  37. Kouzehgar, M., Tamilselvam, Y.K., Heredia, M.V., Elara, M.R.: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks. Autom. Constr. 108, 102959 (2019)

  38. Lakshmi, L., Reddy, M., Santhaiah, C., Reddy, U.: Smart phishing detection in web pages using supervised deep learning classification and optimization technique adam. Wireless Pers. Commun. 118(4), 3549–3564 (2021)

    Article  Google Scholar 

  39. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  40. Li, K., Jin, Y., Akram, M.W., Han, R., Chen, J.: Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy. Vis. Comput. 36(2), 391–404 (2020)

    Article  Google Scholar 

  41. Li, S., Zhao, X.: Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civil Eng. 2019,(2019)

  42. Li, X., He, M., Li, H., Shen, H.: A combined loss-based multiscale fully convolutional network for high-resolution remote sensing image change detection. IEEE Geosci. Remote Sens. Lett. 1–5 (2021)

  43. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  44. Liu, C., Ying, J., Yang, H., Hu, X., Liu, J.: Improved human action recognition approach based on two-stream convolutional neural network model. Vis. Comput. 37(6), 1327–1341 (2021)

    Article  Google Scholar 

  45. Mantovani, R.G., Horváth, T., Cerri, R., Vanschoren, J., de Carvalho, A.C.: Hyper-parameter tuning of a decision tree induction algorithm. In: 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 37–42 (2016)

  46. Mantovani, R.G., Rossi, A.L., Alcobaça, E., Vanschoren, J., de Carvalho, A.C.: A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves svm classifiers. Inf. Sci. 501, 193–221 (2019)

    Article  Google Scholar 

  47. Monshi, M.M.A., Poon, J., Chung, V., Monshi, F.M.: Covidxraynet: Optimizing data augmentation and cnn hyperparameters for improved covid-19 detection from cxr. Comput. Biol. Med. 133, 104375 (2021)

  48. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2017)

    Google Scholar 

  49. Nahhas, F., Shafri, H., Sameen, M., Pradhan, B., Mansor, S.: Deep learning approach for building detection using lidar-orthophoto fusion. J. Sens. 2018 (2018)

  50. Ni, X., Li, C., Jiang, H., Takeda, F.: Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield. Hortic. Res. 7(1), 1–14 (2020)

    Article  Google Scholar 

  51. Ottoni, A.L., Nepomuceno, E.G., de Oliveira, M.S., de Oliveira, D.C.: Reinforcement learning for the traveling salesman problem with refueling. Complex Intell. Syst. 1–15 (2021)

  52. Ottoni, A.L.C., Nepomuceno, E.G., de Oliveira, M.S.: A response surface model approach to parameter estimation of reinforcement learning for the travelling salesman problem. J. Control Autom. Electr. Syst. 29(3), 350–359 (2018)

    Article  Google Scholar 

  53. Ottoni, A.L.C., Nepomuceno, E.G., de Oliveira, M.S., de Oliveira, D.C.R.: Tuning of reinforcement learning parameters applied to sop using the scott-knott method. Soft. Comput. 24, 4441–4453 (2020)

    Article  Google Scholar 

  54. Ottoni, A.L.C., Novo, M.S.: A deep learning approach to vegetation images recognition in buildings: a hyperparameter tuning case study. IEEE Lat. Am. Trans. 19(12), 2062–2070 (2021)

    Article  Google Scholar 

  55. Pirotti, F., Zanchetta, C., Previtali, M., Della Torre, S.: Detection of building roofs and facades from aerial laser scanning data using deep learning. In: 2nd International Conference of Geomatics and Restoration, GEORES 2019, volume 42, pp. 975–980. Copernicus GmbH (2019)

  56. Postalcıoğlu, S.: Performance analysis of different optimizers for deep learning-based image recognition. Int. J. Pattern Recognit. Artif. Intell. 34(02), 1–12 (2020)

    Article  Google Scholar 

  57. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020)

  58. Rangarajan, A.K., Purushothaman, R., Ramesh, A.: Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 133, 1040–1047 (2018)

    Article  Google Scholar 

  59. Razali, N.M., Wah, Y.B., et al.: Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson-darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

    Google Scholar 

  60. Russell, S.J., Norving, P.: Artificial Intelligence. Campus, 3rd edn. (2013)

  61. Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3), 507–512 (1974)

    Article  MATH  Google Scholar 

  62. Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–14 (2019)

    Article  Google Scholar 

  63. Silva, I.N., Spatti, D.H., Flauzino, R.A.: Artificial neural networks for engineering and applied sciences: theoretical foundations and practical aspects (in portuguese). ArtLiber (2016)

  64. Silveira, B., Melo, R., Costa, D. B.: Using uas for roofs structure inspections at post-occupational residential buildings. In: Toledo Santos, E., Scheer, S. (eds.) Proceedings of the 18th International Conference on Computing in Civil and Building Engineering, pp. 1055–1068, Cham. Springer International Publishing (2021)

  65. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015–Conference Track Proceedings. (2015)

  66. Singh, R., Goel, A., Raghuvanshi, D.: Computer-aided diagnostic network for brain tumor classification employing modulated gabor filter banks. Vis. Comput. 37(8), 2157–2171 (2021)

    Article  Google Scholar 

  67. Staffa, L. B., Sá, L. S. V., Lima, M. I. S. C., Costa, D. B.: Use of image processing techniques for inspection of building roof structures for technical assistance purposes (in portuguese). ENTAC - National Meeting of the Built Environment Technology (2020)

  68. Strohm, H., Rothlübbers, S., Eickel, K., Günther, M.: Deep learning-based reconstruction of ultrasound images from raw channel data. Int. J. Comput. Assist. Radiol. Surg. 15(9), 1487–1490 (2020)

    Article  Google Scholar 

  69. Sudre, C., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. volume 10553 LNCS, pp. 240–248 (2017)

  70. Tripathi, G., Singh, K., Vishwakarma, D.: Convolutional neural networks for crowd behaviour analysis: a survey. Vis. Comput. 35(5), 753–776 (2019)

    Article  Google Scholar 

  71. Uçkun, F.A., Özer, H., Nurbaş, E., Onat, E.: Direction finding using convolutional neural networks and convolutional recurrent neural networks. In: 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2020)

  72. Wadhawan, A., Kumar, P.: Deep learning-based sign language recognition system for static signs. Neural Comput. Appl. 32(12), 7957–7968 (2020)

    Article  Google Scholar 

  73. Wang, W., Hu, Y., Luo, Y., Zhang, T.: Brief survey of single image super-resolution reconstruction based on deep learning approaches. Sens. Imaging 21(1), 1–20 (2020)

    Article  Google Scholar 

  74. Yadav, O., Passi, K., Jain, C.K.: Using deep learning to classify x-ray images of potential tuberculosis patients. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2368–2375. IEEE

  75. Yang, H., Min, K.: Classification of basic artistic media based on a deep convolutional approach. Vis. Comput. 36(3), 559–578 (2020)

    Article  MathSciNet  Google Scholar 

  76. Yang, M., Ma, T., Tian, Q., Tian, Y., Al-Dhelaan, A., Al-Dhelaan, M.: Aggregated squeeze-and-excitation transformations for densely connected convolutional networks. Vis. Comput. 1–14 (2021)

  77. Younis, M.C., Keedwell, E.: Semantic segmentation on small datasets of satellite images using convolutional neural networks. J. Appl. Remote Sens. 13(4), 046510 (2019)

  78. Zhang, S., He, F.: Drcdn: learning deep residual convolutional dehazing networks. Vis. Comput. 36(9), 1797–1808 (2020)

    Article  Google Scholar 

  79. Zhou, S., Song, W.: Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Autom. Constr. 114, 1–17 (2020)

    Article  Google Scholar 

  80. Ünlü, R., Kiriş, R.: Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation. Vis. Comput. 1–10 (2021)

Download references

Acknowledgements

The authors are grateful to Research Group in Construction Technology and Management (GETEC)—School of Engineering (UFBA)—for providing the image database, UFBA and UFRB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Carvalho Ottoni.

Ethics declarations

Conflict of interest

The Authors listed in this article declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottoni, A.L.C., Novo, M.S. & Costa, D.B. Hyperparameter tuning of convolutional neural networks for building construction image classification. Vis Comput 39, 847–861 (2023). https://doi.org/10.1007/s00371-021-02350-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02350-9

Keywords

Navigation