Skip to main content
Log in

Shading and texture constrained retinex for correcting vignetting on dermatological macro images

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Because of the flexibility and availability of high-resolution digital cameras, dermatological photography is considered as a good alternative to dermoscopy. However, uneven background illumination on the dermatological photographs makes their automated analysis troublesome. Equalization of the uneven background illumination is helpful to make the automated analysis of the dermatological photographs more sensitive and specific. A customized algorithm for equalizing the uneven background illumination on dermatological photographs is proposed in this paper. The illumination-corrected image is reconstructed from the gamma-corrected illumination component in Hue Value Saturation (HSV) color space. The Retinex decomposition of the value component is formulated as a non-convex optimization problem. Constraints within the cost function are derived from the shading and texture priors. The shading and texture priors are computed respectively from the derivatives of the illumination and texture priors. On 137 dermatological photographs, the values of Average Gradient of the Illumination Component, Lightness Order Error, Sparse Feature Fidelity, Visual Saliency-based Index, Visual Information Fidelity and the computational time exhibited by the proposed devignetting algorithm are 0.1895 ± 0.0386, 232.9553 ± 140.7912, 0.9783 ± 0.0106, 0.9903 ± 0.0021, 0.7063 ± 0.0396 and 2.0272 ± 0.4319 (sec). The proposed algorithm is able to equalize the uneven background illumination without scaling or boosting it intolerably. It produces output images that are natural in appearance and free from structural/color artefacts. The loss of salient information is negligible in the proposed algorithm. It is computationally fast, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data may be provided on request.

References

  1. Salah, K.B., Othmani, M., Kherallah, M.: A novel approach for human skin detection using convolutional neural network. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02108-3

    Article  Google Scholar 

  2. García, B.G., Pariente, J.A., Calzada, P.M.: Development of a clinical-dermoscopic model for the diagnosis of urticarial vasculitis. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-63146-w

    Article  Google Scholar 

  3. MacLellan, A.N., Price, E.L., Brouwer, P.B., Matheson, K., Ly, T.Y., Pasternak, S., Walsh, N.M., Gallant, C.J., Oakley, A., Hull, P.R., Langley, R.G.: The use of non-invasive imaging techniques in the diagnosis of melanoma: a prospective diagnostic accuracy study. J. Am. Acad. Dermatol. (2020). https://doi.org/10.1016/j.jaad.2020.04.019

    Article  Google Scholar 

  4. Glaister, J., Amelard, R., Wong, A., Clausi, D.A.: MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans. Biomed. Eng. 60(7), 1873–1883 (2013)

    Article  Google Scholar 

  5. Yang, Y., Jia, W., Wu, B.: Simultaneous segmentation and correction model for color medical and natural images with intensity inhomogeneity. Vis. Comput. 36, 717–731 (2020). https://doi.org/10.1007/s00371-019-01651-4

    Article  Google Scholar 

  6. Norton, K.A., Iyatomi, H., Celebi, M.E., Ishizaki, S., Sawada, M., Suzaki, R., Kobayashi, K., Tanaka, M., Ogawa, K.: Three-phase general border detection method for dermoscopy images using non-uniform illumination correction. Skin Res. Technol. 18(3), 290–300 (2012)

    Article  Google Scholar 

  7. Ren, X., Li, M., Cheng, W., Liu, J.: Joint enhancement and denoising method via sequential decomposition. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Florence, pp. 1–5 (2018)

  8. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Agudo, A., Lepetit, V., Moreno-Noguer, F.: Simultaneous completion and spatiotemporal grouping of corrupted motion tracks. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02238-8

    Article  Google Scholar 

  11. Zheng, Y., Lin, S., Kambhamettu, C., Yu, J., Kang, S.B.: Single-image vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2243–2256 (2009)

    Article  Google Scholar 

  12. Kang, S., Weiss, R.: Can we calibrate a camera using an image of a flat textureless lambertian surface? In: ECCV, vol. 2, pp. 640–653 (2000)

  13. Huang, S., Cheng, F., Chiu, Y.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, S., Zheng, J., Hu, H., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  15. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)

    Article  Google Scholar 

  16. Tian, Q.C., Cohen, L.D.: A variational-based fusion model for non-uniform illumination image enhancement via contrast optimization and color correction. Signal Process. 153, 210–220 (2018)

    Article  Google Scholar 

  17. Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2018)

    Article  Google Scholar 

  18. Srinivas, K., Bhandari, A.K.: Low light image enhancement with adaptive sigmoid transfer function. IET Image Process. 14(4), 668–678 (2020)

    Article  Google Scholar 

  19. Shamsudeen, F.M., Raju, G.: An objective function based technique for devignetting fundus imagery using MST. Inf. Med. Unlocked 14, 82–91 (2019)

    Article  Google Scholar 

  20. Bulut, F.: Low dynamic range histogram equalization (LDR-HE) via quantized Haar wavelet transform. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02281-5

    Article  Google Scholar 

  21. Gupta, N., Garg, H., Agarwal, R.: A robust framework for glaucoma detection using CLAHE and EfficientNet. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02114-5

    Article  Google Scholar 

  22. Lu, Y., Xie, F., Wu, Y., Jiang, Z., Meng, R.: No Reference uneven illumination assessment for dermoscopy images. IEEE Signal Process. Lett. 22(5), 534–538 (2015)

    Article  Google Scholar 

  23. Xie, F., Lu, Y., Bovik, A.C., Jiang, Z., Meng, R.: Application-driven no-reference quality assessment for dermoscopy images with multiple distortions. IEEE Trans. Biomed. Eng. 63(6), 1248–1256 (2016)

    Article  Google Scholar 

  24. Zhang, Y., Liu, H., Huang, N., Wang, Z.: Dynamical stochastic resonance for non-uniform illumination image enhancement. IET Image Process. 12(12), 2147–2152 (2018)

    Article  Google Scholar 

  25. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  26. Chang, H., Yang, H., Gan, Y., Wang, M.: Sparse feature fidelity for perceptual image quality assessment. IEEE Trans. Image Process. 22(10), 4007–4018 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. DermQuest.: Available: https://uwaterloo.ca/vision-image-processing-lab/research-demos/skin-cancer-detection (2020)

  29. Hameed, N., Shabut, A.M., Ghosh, M.K., Hossain, M.A.: Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst. Appl. 141 (2020)

  30. Zhang, N., Cai, Y.X., Wang, Y.Y., Tian, Y.T., Wang, X.L., Badami, B.: Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 102 (2020)

  31. Hajabdollahi, M., Esfandiarpoor, R., Khadivi, P., Soroushmehr, S.M.R., Karimi, N., Samavi, S.: Simplification of neural networks for skin lesion image segmentation using color channel pruning. Comput. Med. Imaging Graph. 82 (2020)

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sathish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Code can be made available on request.

Human or animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, S., Sumithra, M.G. & Mohanasundaram, K. Shading and texture constrained retinex for correcting vignetting on dermatological macro images. Vis Comput 39, 693–709 (2023). https://doi.org/10.1007/s00371-021-02368-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02368-z

Keywords

Navigation