Skip to main content
Log in

A real-time deformable cutting method using two levels of linked voxels for improved decoupling between collision and rendering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The linked voxel model is commonly used to simulate real-time interactive cutting of deformable objects. Previous methods use a single level of voxels and result in tight coupling between collision and rendering. In this paper, a novel method using two levels of voxels is proposed. The object surface mesh is divided into an interface mesh constructed on a fine level voxel grid and a cut surface mesh constructed on a coarse level voxel grid. Collision uses a collision proxy constructed on the coarse level voxel grid and is therefore decoupled from the rendering quality of the interface mesh. The only drawback of our method is that collision is still coupled to the rendering quality of the cut surface mesh. Simulation tests show that simulations using our method have higher frame rates than those using a single level of fine voxels, while achieving comparable rendering qualities for the interface meshes. Although the rendering qualities of the cut surface meshes are only comparable to those using a single level of coarse voxels, the rendering qualities of the boundary lines between different materials on the cut surface and the outer edges of the cut surface are better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts in deformable bodies. Comput. Gr. Forum 34(6), 161–187 (2015)

    Article  Google Scholar 

  2. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2), 394–410 (2014)

    Article  Google Scholar 

  3. Paulus, C.J., Untereiner, L., Courtecuisse, H., Cotin, S., Cazier, D.: Virtual cutting of deformable objects based on efficient topological operations. Vis. Comput. 31(6), 831–841 (2015)

    Article  Google Scholar 

  4. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. on Gr. 23(3), 385–392 (2004)

    Article  Google Scholar 

  5. Sifakis, E., Der, K.G., Fedkiw, R.. Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2007, pp. 73–80

  6. Wang, Y., Jiang, C., Schroeder, C., Teran, J.. An adaptive virtual node algorithm with robust mesh cutting. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2014, pp. 77–85

  7. Jia, S., Zhang, W., Yu, X., Pan, Z.: CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL. Int. J. Comput. Assist. Radiol. Surg. 10(9), 1477–1491 (2015)

    Article  Google Scholar 

  8. Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Gr. Appl. 29(2), 61–71 (2009)

    Article  Google Scholar 

  9. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. ACM Trans. Gr. 28(3), 50 (2009)

    Article  Google Scholar 

  10. Turkiyyah, G.M., Karam, W.B., Ajami, Z., Nasri, A.: Mesh cutting during real-time physical simulation. Computer. Aided Des. 43(7), 809–819 (2011)

    Article  Google Scholar 

  11. Koschier, D., Bender, J., Thuerey, N.: Robust eXtended finite elements for complex cutting of deformables. ACM Trans. Gr. 36(4), 55 (2017)

    Article  Google Scholar 

  12. Steinemann, D., Otaduy, M.A., Gross, M.: Splitting meshless deforming objects with explicit surface tracking. Gr. Models 71(6), 209–220 (2009)

    Article  Google Scholar 

  13. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes - A fast and robust technique for virtual cutting. Vis. Comput. 25(3), 227–239 (2009)

    Article  Google Scholar 

  14. Aras, R., Shen, Y., Audette, M.: An analytic meshless enrichment function for handling discontinuities in interactive surgical simulation. Adv. Eng. Softw. 102, 40–48 (2016)

    Article  Google Scholar 

  15. Pan, J., Yang, Y., Gao, Y., Qin, H., Si, Y.: Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. Vis. Comput. 35(6–8), 861–872 (2019)

    Article  Google Scholar 

  16. Magnoux, V., Ozell, B.: Real-time visual and physical cutting of a meshless model deformed on a background grid. Comput. Animat. Virt. W., Published online: June 8, 2020.

  17. Berndt, I., Torchelsen, R., Maciel, A.: Efficient surgical cutting with position-based dynamics. IEEE Comput. Gr. Appl. 38(3), 24–31 (2017)

    Article  Google Scholar 

  18. Pan, J., Yan, S., Qin, H., Hao, A.: Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method. Vis. Comput. 34(1), 105–116 (2018)

    Article  Google Scholar 

  19. Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol. Biol. 103(2/3), 217–224 (2010)

    Article  Google Scholar 

  20. Seiler, M., Steinemann, D., Spillmann, J., Harders, M.: Robust interactive cutting based on an adaptive octree simulation mesh. Vis. Comput. 27(6/8), 519–529 (2011)

    Article  Google Scholar 

  21. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Vis. Comput. Gr. 17(11), 1663–1675 (2011)

    Article  Google Scholar 

  22. Wu, J., Dick, C., Westermann, R.: Interactive high-resolution boundary surfaces for deformable bodies with changing topology. In: VRIPHYS 2011—8th Workshop on Virtual Reality Interactions and Physical Simulations, pp. 29–38 (2011).

  23. Wu, J., Dick, C., Westermann, R.: Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis. Comput. 29(6/8), 739–749 (2013)

    Article  Google Scholar 

  24. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Gr. 21(3), 339–346 (2002)

    Article  Google Scholar 

  25. Jia, S., Pan, Z., Wang, G., Zhang, W., Yu, X.: Stable real-time surgical cutting simulation of deformable objects embedded with arbitrary triangular meshes. J. Comput. Sci. Tech. 32(6), 1198–1213 (2017)

    Article  MathSciNet  Google Scholar 

  26. Jia, S., Zhang, W., Yu, X., Pan, Z.: CPU-GPU parallel framework for real-time interactive cutting of adaptive octree-based deformable objects. Comput. Gr. Forum 37(1), 45–59 (2018)

    Article  Google Scholar 

  27. Jia, S., Zhang, W., Pan, Z., Wang, G., Yu, X.: Using pseudo voxel octree to accelerate collision between cutting tool and deformable objects modeled as linked voxels. Vis. Comput. 36(5), 1017–1028 (2020)

    Article  Google Scholar 

  28. Qi, D., Milef, N., De, S.: Divided Voxels: an efficient algorithm for interactive cutting of deformable objects. Vis. Comput. 37(5), 1113–1127 (2021)

    Article  Google Scholar 

Download references

Funding

The work described in this paper was funded by the Natural Science Foundation of Shandong Province of China (Grant Number ZR2020MF043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 6286 kb)

Supplementary file2 (AVI 6230 kb)

Supplementary file3 (AVI 7398 kb)

Supplementary material 1 (ZIP 8284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Zhang, W., Wang, G. et al. A real-time deformable cutting method using two levels of linked voxels for improved decoupling between collision and rendering. Vis Comput 39, 765–783 (2023). https://doi.org/10.1007/s00371-021-02373-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02373-2

Keywords

Navigation