Abstract
The goal of non-rigid point set registration is to estimate the optimal correspondence between points, and then recover the non-rigid deformation between point sets in a specific way, typically by using a set of complex interpolation functions. Many non-rigid matching algorithms have been studied, but only a few algorithms fully exploit the local structure between point sets. To improve the accuracy of point set registration, this paper proposes a new non-rigid registration algorithm that uses both the global structure and the stable local structure of a non-rigid shape to constrain the registration. Specifically, we consider the point set registration problem as a probability assignment problem, with the probability determined by the Gaussian mixture model and the local structure of the point set. In particular, the Hausdorff distance can effectively measure the similarity of the local structure of the point set in the proposed algorithm. The transformation between the two-point sets is determined by the reproducing kernel Hilbert space based on the motion coherence theory once the correspondence is determined. A significant number of experiments show that the proposed technique has higher registration accuracy than several other state-of-the-art algorithms when dealing with non-rigid registration problems, especially when the point set contains outliers and severely missing points.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ma, J., Zhao, J., Yuille, A.L.: Non-rigid point set registration by preserving global and local structures. IEEE Trans. Image Process. 25(1), 53–64 (2016)
Hu, L., Xiao, J., Wang, Y.: An automatic 3D registration method for rock mass point clouds based on plane detection and polygon matching. Vis. Comput. 36, 669–691 (2020)
Krishnakumar, K., Gandhi, S.I.: Video stitching based on multiview spatiotemporal feature points and grid-based matching. Vis. Comput. 36, 1837–1846 (2020)
Kan, P., Kaufmann, H.: DeepLight: light source estimation for augmented reality using deep learning. Vis. Comput. 35(6–8), 873–883 (2019)
Choi, J., et al.: Position-based augmented reality platform for aiding construction and inspection of offshore plants. Vis. Comput. 36(10), 2039–2049 (2020)
Iglesias, J.P., Olsson, C., Kahl, F.: Global optimality for point set registration using semidefinite programming. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8284–8292 (2020)
Li, J., Hu, Q., Ai, M.: Point cloud registration based on one-point RANSAC and scale-annealing biweight estimation. IEEE Trans. Geosci. Remote Sens. 59(11), 9716–9729 (2021)
Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)
Hirose, O.: A Bayesian formulation of coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2269–2286 (2021)
Maiseli, B., Gu, Y., Gao, H.: Recent developments and trends in point set registration methods. J. Vis. Commun. Image Represent. 46, 95–106 (2017)
Liao, Q.F., Sun, D., Andreasson, H.: Point set registration for 3d range scans using fuzzy cluster-based metric and efficient global optimization. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3229–3246 (2021)
Hui, K.C., Li, Y.: A feature-based shape blending technique for industrial design. Comput. Aided Des. 30(10), 823–834 (1998)
Lowe, D.G.: Robust model-based motion tracking through the integration of search and estimation. Int. J. Comput. Vision 8(2), 113–122 (1994)
Besl, P.J., Mckay, H.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)
Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image Vis. Comput. 21(13–14), 1145–1153 (2001)
Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)
Bing, J., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell. 33(8), 1633–1645 (2011)
Meng, F., Li, X., Pei, J.: A feature point matching based on spatial order constraints bilateral-neighbor vote. IEEE Trans. Image Process. 24(11), 4160–4171 (2015)
Ma, Y., et al.: Efficient rotation estimation for 3D registration and global localization in structured point clouds. Image Vis. Comput. 67, 52–66 (2017)
Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 643–649 (2006)
Zhang, M., Yang, C., Wei, L., et al.: Non-rigid point set registration via coherent spatial mapping and local structures preserving. In: 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 382–385 (2016)
Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., Tian, J.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015)
Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vis. 127(5), 512–531 (2019)
Ma, J., Jiang, J., Liu, C., Li, Y.: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Inf. Sci. 417, 128–142 (2017)
Ma, J., Jiang, X., Jiang, J., Gao, Y.: Feature-guided Gaussian mixture model for image matching. Pattern Recognit. 92, 231–245 (2019)
Fischer, A., Frinken, V., et al.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recognit. 48(2), 331–343 (2015)
Jain, A., Kanhangad, V.: Exploring orientation and accelerometer sensor data for personal authentication in smartphones using touchscreen gestures. Pattern Recogn. Lett. 68, 351–360 (2015)
Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. Image Process. 8(3), 425–429 (1999)
Wang, Y., Chua, C.S.: Robust face recognition from 2d and 3d images using structural hausdorff distance. Image Vis. Comput. 24(2), 176–185 (2001)
Ma, J., Jiang, X., Fan, A., Jiang, J., Yan, J.: Image matching from handcrafted to deep features: a survey. Int. J. Comput. Vis. 129(1), 23–79 (2021)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)
Yang, J., Li, H., Campbell, D., Jia, Y.: Go-icp: a globally optimal solution to 3d icp point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2016)
Khoo, Y., Kapoor, A.: Non-iterative rigid 2D/3D point-set registration using semidefinite programming. IEEE Trans. Image Process. 25(7), 2956–2970 (2016)
Vongkulbhisal, J., et al.: Inverse composition discriminative optimization for point cloud registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2993–3001 (2018).
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)
Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 190–197 (2000).
Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: European Conference on Computer Vision, pp. 558–569 (2004).
Ma, J., Qiu, W., Zhao, J., Ma, Y., Yuille, A.L., Tu, Z.: Robust L2E estimation of transformation for non-rigid registration. IEEE Trans. Signal Process. 63(5), 1115–1129 (2015)
Chen, J., Ma, J., Yang, C., Ma, L., Zheng, S.: Non-rigid point set registration via coherent spatial mapping. Signal Process. 106, 62–72 (2015)
Wang, G., Chen, Y.: SCM: spatially coherent matching with Gaussian field learning for nonrigid point set registration. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 203–213 (2021)
Ma, J., Jiang, X., Jiang, J., Zhao, J., Guo, X.: LMR: Learning a two-class classifier for mismatch removal. IEEE Trans. Image Process. 28(8), 4045–4059 (2019)
Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018).
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009).
Rote, G.: Computing the minimum hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38(3), 123–127 (1991)
Li, B., Shen, Y., Bo, L.: A new algorithm for computing the minimum hausdorff. Inf. Process. Lett. 106(2), 52–58 (2008)
Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the motion coherence theory. Int. J. Comput. Vis. 3(2), 155–175 (1989)
Yang, G., Li, R., Liu, Y., Wang, J.: A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis. Comput. 5, 1–21 (2021)
Ge, S., Fan, G.: Topology-aware non-rigid point set registration via global–local topology preservation. Mach. Vis. Appl. 30(4), 717–735 (2019)
Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1469–1472 (2010).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, QY., Feng, DZ. & Hu, HS. A robust non-rigid point set registration algorithm using both local and global constraints. Vis Comput 39, 1217–1234 (2023). https://doi.org/10.1007/s00371-022-02400-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02400-w