Abstract
In clinical practice, accurate polyp segmentation provides important information for the early detection of colorectal cancer. Benefiting from the advancement of deep learning techniques, various neural networks have been developed for polyp segmentation. However, most state-of-the-art methods have suffered from the challenge of precisely segmenting polyps with clear boundaries. To tackle this challenge, in this paper, we propose a novel and effective cascade boundary-guided attention network based on an encoder–decoder framework. Specifically, instead of just using the addition of shallow and deep features, the fine-grained boundary information is explicitly introduced into the skip connection of encoder and decoder layers to achieve accurate polyp segmentation. Moreover, the cascade refinement strategy is utilized into the multi-stage enhancement of boundary features to progressively produce better predictions. Extensive evaluations on five public benchmark datasets show that our method outperforms state-of-the-arts on various polyp segmentation tasks. Further experiments conducted on the cross-dataset (training on one dataset and testing on another dataset) validate the generalization ability of the proposed method.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ameling, S., Wirth, S., Paulus, D., Lacey, G., Vilarino, F.: Texture-based polyp detection in colonoscopy. In: Bildverarbeitung für die Medizin 2009, pp. 346–350. Springer (2009)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 39(12), 2481–2495 (2017)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics 43, 99–111 (2015)
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognition 45(9), 3166–3182 (2012)
Brandao, P., Mazomenos, E., Ciuti, G., Caliò, R., Bianchi, F., Menciassi, A., Dario, P., Koulaouzidis, A., Arezzo, A., Stoyanov, D.: Fully convolutional neural networks for polyp segmentation in colonoscopy. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101340F. International Society for Optics and Photonics (2017)
Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: Hardnet: A low memory traffic network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3552–3561 (2019)
Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 234–250 (2018)
Cheng, Z., Qu, A., He, X.: Contour-aware semantic segmentation network with spatial attention mechanism for medical image. The Visual Computer pp. 1–14 (2021)
De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Annals of operations research 134(1), 19–67 (2005)
Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 263–273. Springer (2020)
Fang, Y., Chen, C., Yuan, Y., Tong, K.y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 302–310. Springer (2019)
Fang, Y., Zhu, D., Yao, J., Yuan, Y., Tong, K.Y.: Abc-net: Area-boundary constraint network with dynamical feature selection for colorectal polyp segmentation. IEEE Sensors Journal 21(10), 11799–11809 (2020)
Galdran, A., Carneiro, G., Ballester, M.A.G.: Double encoder-decoder networks for gastrointestinal polyp segmentation. In: International Conference on Pattern Recognition, pp. 293–307. Springer (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)
Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv preprint arXiv:1912.12180 (2019)
Huang, L., Liu, F.: Retinal vessel segmentation using simple spcnn model and line connector. The Visual Computer pp. 1–14 (2020)
Huang, S.W., Zhang, A., Tian, X.L., Sun, Y.K.: Dynamic adaptive weight multi-scale and multi-structure morphological edge detection in anterior chamber oct images. In: Advanced Materials Research, vol. 340, pp. 70–75. Trans Tech Publ (2012)
Hwang, S., Oh, J., Tavanapong, W., Wong, J., De Groen, P.C.: Polyp detection in colonoscopy video using elliptical shape feature. In: 2007 IEEE International Conference on Image Processing, vol. 2, pp. II–465. IEEE (2007)
Jha, D., Smedsrud, P.H., Riegler, M.A., Johansen, D., De Lange, T., Halvorsen, P., Johansen, H.D.: Resunet++: An advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255. IEEE (2019)
Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D., Johansen, H.D.: Kvasir-seg: A segmented polyp dataset. In: International Conference on Multimedia Modeling, pp. 451–462. Springer (2020)
Jha, D., Smedsrud, P.H., Johansen, D., de Lange, T., Johansen, H.D., Halvorsen, P., Riegler, M.A.: A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation. IEEE journal of biomedical and health informatics 25(6), 2029–2040 (2021)
Jiang, M., Zhai, F., Kong, J.: Sparse attention module for optimizing semantic segmentation performance combined with a multi-task feature extraction network. The Visual Computer pp. 1–16 (2021)
Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Karras, D.A., Tzivras, M.: Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE transactions on information technology in biomedicine 7(3), 141–152 (2003)
Mahmud, T., Paul, B., Fattah, S.A.: Polypsegnet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Computers in Biology and Medicine 128, 104119 (2021)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), pp. 565–571. IEEE (2016)
Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: Psi-net: Shape and boundary aware joint multi-task deep network for medical image segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226. IEEE (2019)
Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Pal, S., Chatterjee, S., Dey, D., Munshi, S.: Morphological operations with iterative rotation of structuring elements for segmentation of retinal vessel structures. Multidimensional Systems and Signal Processing 30(1), 373–389 (2019)
Qadir, H.A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., Balasingham, I.: Polyp detection and segmentation using mask r-cnn: Does a deeper feature extractor cnn always perform better? In: 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1–6. IEEE (2019)
Qian, X., Quan, H., Wu, M.: Prnet: polar regression network for medical image segmentation. The Visual Computer pp. 1–12 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28, 91–99 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer (2015)
Rutter, C.M., Johnson, E., Miglioretti, D.L., Mandelson, M.T., Inadomi, J., Buist, D.S.: Adverse events after screening and follow-up colonoscopy. Cancer Causes & Control 23(2), 289–296 (2012)
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International journal of computer assisted radiology and surgery 9(2), 283–293 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 (2016)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE transactions on medical imaging 35(2), 630–644 (2015)
Vázquez, D., Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., López, A.M., Romero, A., Drozdzal, M., Courville, A.: A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering 2017 (2017)
Wang, D., Hu, G., Lyu, C.: Frnet: an end-to-end feature refinement neural network for medical image segmentation. The Visual Computer 37, 1101–1112 (2021)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. Ieee (2003)
Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)
Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy. Computers in Biology and Medicine 137, 104815 (2021)
Yue, K., Sun, M., Yuan, Y., Zhou, F., Ding, E., Xu, F.: Compact generalized non-local network. arXiv preprint arXiv:1810.13125 (2018)
Zhang, G., Shen, X., Zhang, Y., Luo, Y., Luo, J., Zhu, D., Yang, H., Wang, W., Zhao, B., Lu, J.: Cross-modal prostate cancer segmentation via self-attention distillation. IEEE Journal of Biomedical and Health Informatics pp. 1–1 (2021). https://doi.org/10.1109/JBHI.2021.3127688
Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 253–262. Springer (2020)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters 15(5), 749–753 (2018)
Zhao, Y., Gui, W., Chen, Z.: Edge detection based on multi-structure elements morphology. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 2, pp. 9795–9798. IEEE (2006)
Zhou, Y., Onder, O.F., Dou, Q., Tsougenis, E., Chen, H., Heng, P.A.: Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation. In: International Conference on Information Processing in Medical Imaging, pp. 682–693. Springer (2019)
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 3–11. Springer (2018)
Zhu, L., She, Q., Li, D., Lu, Y., Kang, X., Hu, J., Wang, C.: Unifying nonlocal blocks for neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12292–12301 (2021)
Acknowledgements
This work was supported by the General Program of National Natural Science Foundation of China (NSFC) (Grant No. 61806147), the Shanghai Sailing Program (21YF1431600), the General Program of National Natural Science Foundation of China (NSFC) (Grant No. 62102259), and the State Key Laboratory of Robotics (2019-O15).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This paper does not contain any studies with human participants or animals performed by any of the authors. The experimental samples used in this paper are all collected from the public database.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lai, H., Luo, Y., Zhang, G. et al. Toward accurate polyp segmentation with cascade boundary-guided attention. Vis Comput 39, 1453–1469 (2023). https://doi.org/10.1007/s00371-022-02422-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02422-4