Skip to main content

Advertisement

Log in

2D arcsine and sine combined logistic map for image encryption

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Chaotic system is widely applied in field of information security because of its excellent properties of unpredictability, no periodicity, pseudo-randomness, and high sensitivity to initial parameters. In this paper, we propose a new chaotic map, named 2D arcsine and sine combined logistic map (2D-ASLM), which is a combination of arcsine, Sine, and Logistic maps. Compared with the existing chaotic maps, the proposed one has the better pseudo-randomness and ergodicity from the viewpoint of chaotic performance. Besides, it also has a more unpredictable chaotic rang as well as a relatively low implementation cost. A chaotic tree transform (CTT) is introduced to effectively disrupt the image pixel positions. Then, the image can be encrypted by combining 2D-ASLM and CTT. Extensive results on encryption simulation and security analysis have shown the effectiveness of the proposed algorithm from different aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Enayatifar, R., Sadaei, H.J., Abdullah, A.H., Lee, M., Isnin, I.F.: A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata. Opt. Lasers Eng. 71, 33–41 (2015)

    Article  Google Scholar 

  2. Chen, J.X., Zhu, Z.L., Fu, C., Yu, H., Zhang, L.B.: An effcient image encryption scheme using gray code based permutation approach. Opt. Lasers Eng. 67, 191–204 (2015)

    Article  Google Scholar 

  3. Ai, X.X., Sun, K.H., He, S.B., Wang, H.H.: Design and application of multiscroll chaotic attractors based on simplified Lorenz system. Acta Phys. Sinica 63(12), 120511–120511 (2014)

    Article  Google Scholar 

  4. Wang, X., Xu, D.: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 75(1–2), 345–353 (2014)

    Article  Google Scholar 

  5. Ye, R.: A novel chaos-based image encryption scheme with an effcient permutation-diffusion mechanism. Opt. Commun. 284(22), 5290–5298 (2011)

    Article  Google Scholar 

  6. Ünal Çavuşoğlu, S., Kaçar, I., Pehlivan, A. Zengin.: Secure image encryption algorithm design using a novel chaos based S-Box. Chaos Solitons Fractals 95, 92–101 (2017)

    Article  MATH  Google Scholar 

  7. Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)

  8. Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, S.J., Chen, X.B., Zhang, R., Yang, Y.X., Guo, Y.C.: An improved chaotic cryptosystem based on circular bit shift and XOR operations. Phys. Lett. A 376(10–11), 1003–1010 (2012)

    Article  MATH  Google Scholar 

  11. Behnia, S., Akhshani, A., Mahmodi, H., Akhavan, A.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35(2), 408–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Abanda, Y., Tiedeu, A.: Image encryption by chaos mixing. IET Image Process. 10(10), 742–750 (2016)

    Article  Google Scholar 

  13. Wang, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)

    Article  Google Scholar 

  14. Haroun, M.F., Gulliver, T.A.: Real-time image encryption using a lowcomplexity discrete 3D dual chaotic cipher. Nonlinear Dyn. 82(3), 1–13 (2015)

    Article  MATH  Google Scholar 

  15. Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66(66), 10–18 (2015)

    Article  Google Scholar 

  16. Yao, W., Zhang, X., Zheng, Z., Qiu, W.: A colour image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems. Nonlinear Dyn. 81(1–2), 1–18 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Zhu, C., Liao, C., Deng, X.: Breaking and improving an image encryption scheme based on total shuffing scheme. Nonlinear Dyn. 71(1–2), 25–34 (2013)

    Article  Google Scholar 

  18. Liu, L., Miao, S., Hu, H., Cheng, M.: N-phase logistic chaotic sequence and its application for image encryption. IET Signal Process. 10(9), 1096–1104 (2016)

    Article  Google Scholar 

  19. Liu, H., Kadir, A., Sun, X.: Chaos-based fast colour image encryption scheme with true random number keys from environmental noise. IET Image Process. 11(5), 324–332 (2017)

    Article  Google Scholar 

  20. Zhu, Z.L., Zhang, W., Wong, K.W., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. Int. J. 181(6), 1171–1186 (2011)

    Google Scholar 

  21. Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf. Sci. 273(8), 329–351 (2014)

    Article  Google Scholar 

  22. Zhou, Y., Bao, L., Chen, C.L.P.: A new 1D chaotic system for image encryption. Signal Process. 97(7), 172–182 (2014)

    Article  Google Scholar 

  23. Hua, Z., Zhou, Y., Pun, C.M., Chen, C.L.P.: 2D sine logistic modulation map for image encryption. Inf. Sci. 297(C), 80–94 (2015)

    Article  Google Scholar 

  24. Liu, W., Sun, K., Zhu, C.: A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016)

    Article  Google Scholar 

  25. Röossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2), 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  26. Hilborn, R.C., Coppersmith, S., Mallinckrodt, A.J., Mckay, S.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, vol. 62. Oxford Univeristy, Oxford (1994)

    Google Scholar 

  27. Hsiao, H.I., Lee, J.: Color image encryption using chaotic nonlinear adaptive filter. Signal Process. 117(C), 281–309 (2015)

    Article  Google Scholar 

  28. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–67 (1976)

    Article  MATH  Google Scholar 

  29. Gallas, J.A.: Structure of the parameter space of the Héenon map. Phys. Rev. Lett. 70(18), 2714–2717 (1993)

    Article  Google Scholar 

  30. Wu, Y.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imag. 21(1), 3014 (2012)

    Article  Google Scholar 

  31. Shevchenko, I.I.: Lyapunov exponents in resonance multiplets. Phys. Lett. A 378(1–2), 34–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Faure, P., Korn, H.: A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals. Phys. D Nonlinear Phenom. 122(1–4), 265–279 (1998)

    Article  Google Scholar 

  33. Shen, C., Yu, S., Lü, J., Chen, G.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I Regular Papers 61(8), 2380–2389 (2017)

    Article  Google Scholar 

  34. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  35. Bassham, L. E., Rukhin A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Leigh, S. D., Banks. D. L.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications| NIST (No. Special Publication (NIST SP)-800-22 Rev 1a) (2010)

  36. Wang, J. T., Tian, D. P.: A scrambling method of binary-tree traversal based on logistic chaotic sequences. J. Xian Univ. Post Telecommun. 1 (032)

  37. Miller, F. P., Vandome, A. F., Mcbrewster, J.: Double Precision Floating-Point Format. Alphascript Publishing

  38. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. Int. J. 222(222), 323–342 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656715 (1949)

    MathSciNet  Google Scholar 

  40. Zhou, Y., Bao, L., Chen, C.L.P.: Image encryption using a new parametric switching chaotic system. Signal Process. 93(11), 3039–3052 (2013)

    Article  Google Scholar 

  41. Liao, X., Lai, S., Zhou, Q.: A Novel Image Encryption Algorithm Based on Self-Adaptive Wave Transmission, pp. 2714–2722. Elsevier Inc, North-Holland (2010)

    MATH  Google Scholar 

  42. Fu, C., Lin, B., Miao, Y., et al.: A novel chaos-based bit-level permutation scheme for digital image encryption. Opt. Commun. 284(23), 5415–5423 (2011)

    Article  Google Scholar 

  43. Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, L., Zhang, Q., Wei, X.: A RGB image encryption algorithm based on DNA encoding and chaos map. Comput. Electr. Eng. 38(5), 1240–1248 (2012)

    Article  Google Scholar 

  45. Cao, C., Sun, K., Liu, W.: A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 143, 122–133 (2018)

    Article  Google Scholar 

  46. Liu, H., Wang, X.: Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt. Commun. 284(16–17), 3895–3903 (2011)

    Article  Google Scholar 

  47. Wang, X., Luan, D.: A novel image encryption algorithm using chaos and reversible cellular automata. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Fu, C., Chen, J.J., Zou, H., Meng, W.H., Zhan, Y.F., Yu, Y.W.: A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt. Expr. 20(3), 2363–78 (2012)

    Article  Google Scholar 

  50. Wu, Y., Noonan, J. P., Agaian, S.: A wheel-switch chaotic system for image encryption, pp. 23-27 (2011)

  51. Hua, Z., Zhou, Y.: Image encryption using 2D logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by Foshan University in part of the funding called Analyzing and hardening single event effects in LDO (2019A1515110127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Duan, Z. & Li, S. 2D arcsine and sine combined logistic map for image encryption. Vis Comput 39, 1517–1532 (2023). https://doi.org/10.1007/s00371-022-02426-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02426-0

Keywords

Navigation