Skip to main content
Log in

A modified fuzzy clustering algorithm based on dynamic relatedness model for image segmentation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Accurate segmentation is the basis of object detection, computer vision and other fields. However, the complexity of images, together with the existence of noise and other image artifacts, makes image segmentation still a bottleneck. In this paper, a dynamic relatedness model is presented and an improved fuzzy clustering algorithm is proposed. Compared with traditional algorithms, the relatedness model is measured in the process of image segmentation, and can avoid the effect of inaccurate features in noisy images. With the help of the proposed relatedness, more accurate information can be adopted to enhance the results. Simulated experiments on various images demonstrate that the proposed algorithm can achieve satisfying results and is insensitive to noise of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pham, D.: Robust fuzzy segmentation of magnetic resonance images. In: Proceedings of 14th IEEE Symposium on Computer-Based Medical Systems, (2001), pp. 127–131. https://doi.org/10.1109/CBMS.2001.941709

  2. Roy, S., Agarwal, H., Carass, A., Bai, Y., Pham, D. L., Prince, J. L.: Fuzzy c-means with variable compactness. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (2008), pp. 452–455. https://doi.org/10.1109/ISBI.2008.4541030

  3. Yu, X., Liu, H., Wu, Y., Ruan, H.: Kernel-based low-rank tensorized multiview spectral clustering. Int. J. Intell. Syst. 36(2), 757–777 (2021). https://doi.org/10.1002/int.22319

    Article  Google Scholar 

  4. Zhang, F., Li, J., Liu, P., Fan, H.: Computing knots by quadratic and cubic polynomial curves. Comput. Vis. Media 6(4), 417–430 (2020). https://doi.org/10.1007/s41095-020-0186-4

    Article  Google Scholar 

  5. Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapur’s entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014). https://doi.org/10.1016/j.eswa.2013.10.059

    Article  Google Scholar 

  6. Kumawat, A., Panda, S.: A robust edge detection algorithm based on feature-based image registration (fbir) using improved canny with fuzzy logic (icwfl). Vis. Comput. (2021) 1–22 https://doi.org/10.1007/s00371-021-02196-1

  7. Aboutabit, N.: A new construction of an image edge detection mask based on caputo-fabrizio fractional derivative. Vis. Comput. 37, 1545–1557 (2021). https://doi.org/10.1007/s00371-020-01896-4

    Article  Google Scholar 

  8. Xiao, C., Gan, J., Hu, X.: Fast level set image and video segmentation using new evolution indicator operators. Vis. Comput. 29, 27–39 (2013). https://doi.org/10.1007/s00371-012-0672-5

    Article  Google Scholar 

  9. Zhang, Y., Guo, Q., Zhang, C.: Simple and fast image superpixels generation with color and boundary probability. Vis. Comput. 37, 1061–1074 (2021). https://doi.org/10.1007/s00371-020-01852-2

    Article  Google Scholar 

  10. Zhang, X., Wang, H., Zhang, Y., Gao, X., Wang, G., Zhang, C.: Improved fuzzy clustering for image segmentation based on a low-rank prior, Computational Visual. Media 7, 513–528 (2021). https://doi.org/10.1007/s41095-021-0239-3

    Article  Google Scholar 

  11. Hu, W., Chen, C., Ye, F., Zheng, Z., Du, Y.: Learning deep discriminative representations with pseudo supervision for image clustering. Inf. Sci. 568, 199–215 (2021). https://doi.org/10.1016/j.ins.2021.03.066

    Article  MathSciNet  Google Scholar 

  12. Zhao, F., Jiao, L., Liu, H., Gao, X.: A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation. Signal Process. 91(4), 988–999 (2011). https://doi.org/10.1016/j.sigpro.2010.10.001

    Article  MATH  Google Scholar 

  13. Liu, X., Zhang, Y., Bao, F., Shao, K., Sun, Z., Zhang, C.: Kernel-blending connection approximated by a neural network for image classification. Comput. Vis. Media 6(7), 1–10 (2020). https://doi.org/10.1007/s41095-020-0181-9

    Article  Google Scholar 

  14. Ma, D., Zhou, Y., Xin, S., Wang, W.: Convex and compact superpixels by edge-constrained centroidal power diagram. IEEE Trans. Image Process.https://doi.org/10.1109/TIP.2020.3045640

  15. Wu, C., Zhang, X.: Total bregman divergence-based fuzzy local information c-means clustering for robust image segmentation. Appl. Soft Comput. 94, 106468 (2020). https://doi.org/10.1016/j.asoc.2020.106468

    Article  Google Scholar 

  16. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013). https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  MATH  Google Scholar 

  17. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002). https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  18. Szilagyi, L., Benyo, Z., Szilagyi, S. M., Adam, H. S.: Mr brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), Vol. 1, (2003), pp. 724–726. https://doi.org/10.1109/IEMBS.2003.1279866

  19. Zheng, Y., Jeon, B., Xu, D., Wu, Q.J., Zhang, H.: Image segmentation by generalized hierarchical fuzzy c-means algorithm. J. Intell. Fuzzy Syst. 28(2), 961–973 (2015). https://doi.org/10.3233/IFS-141378

    Article  Google Scholar 

  20. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007). https://doi.org/10.1016/j.patcog.2006.07.011

    Article  MATH  Google Scholar 

  21. Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010). https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  MATH  Google Scholar 

  22. Benaichouche, A., Oulhadj, H., Siarry, P.: Improved spatial fuzzy c-means clustering for image segmentation using pso initialization, mahalanobis distance and post-segmentation correction. Digital Signal Process. 23(5), 1390–1400 (2013). https://doi.org/10.1016/j.dsp.2013.07.005

    Article  MathSciNet  Google Scholar 

  23. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012). https://doi.org/10.1109/TIP.2011.2170702

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Sun, Y., Wang, G., Guo, Q., Chen, B.: Improved fuzzy clustering algorithm with non-local information for image segmentation. Multimedia Tools Appl. 76(6), 7869–7895 (2016). https://doi.org/10.1007/s11042-016-3399-x

    Article  Google Scholar 

  25. Zhang, X., Sun, Y., Liu, H., Hou, Z., Zhao, F., Zhang, C.: Improved clustering algorithms for image segmentation based on non-local information and back projection. Inf. Sci. 550(6), 129–144 (2021). https://doi.org/10.1016/j.ins.2020.10.039

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, S., Zhang, D.: Robust image segmentation using fcm with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) 34(4), 1907–1916 (2004). https://doi.org/10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  27. Liu, K., Guo, Y., Hong, Q., Wu, Q., Zhang, H.: A new spatial fuzzy c-means for spatial clustering. WSEAS Trans. Comput. 14, 369–381 (2015)

    Google Scholar 

  28. Tripathy, B.K., Basu, A., Govel, S.: Image segmentation using spatial intuitionistic fuzzy c means clustering, in. IEEE Int. Conf. Comput. Intell. Comput. Research 2014, 1–5 (2014). https://doi.org/10.1109/ICCIC.2014.7238446

    Article  Google Scholar 

  29. Gharieb, R.R., Gendy, G.: Fuzzy c-means with a local membership kl distance for medical image segmentation, in. Cairo Int. Biomed. Eng. Conf. (CIBEC) 2014, 47–50 (2014). https://doi.org/10.1109/CIBEC.2014.7020912

    Article  Google Scholar 

  30. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybernet. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  31. Jaffar, A., Naveed, N., Lodhi, B., Hussain, A.,Mirza, A.: Fuzzy c-means clustering with spatial information for color image segmentation. In: Proceeding of 2009 Third International Conference on Electrical Engineering, (2009), pp. 1–6. https://doi.org/10.1109/ICEE.2009.5173186

  32. Cocosco, C., Kollokian, V., Kwan, R. K. S., Bruce, G.: Brainweb: Online interface to a 3d mri simulated brain database, NeuroImage 5(4)

  33. Besser, H.: Visual access to visual images: The uc berkeley image database project. Libr. Trends 38(4), 120–130 (1990). https://doi.org/10.1016/j.foot.2012.03.009

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, (2015), pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  35. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European conference on computer vision (ECCV), (2018), pp. 801–818. arXiv:1802.02611

  36. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5(1), 1–9 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  37. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., Kittler, H., Halpern, A.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic) (2019). arXiv:1902.03368

Download references

Acknowledgements

This research was funded by NSF of China under Granted Number 61873117, 61903172, 62007017, 62106091, 62176140 and 62171209. The authors also gratefully acknowledge the reviewers’ helpful comments and suggestions, which will improve the presentation significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhang, Y., Wang, H. et al. A modified fuzzy clustering algorithm based on dynamic relatedness model for image segmentation. Vis Comput 39, 1583–1596 (2023). https://doi.org/10.1007/s00371-022-02430-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02430-4

Keywords

Navigation