Skip to main content
Log in

Regions of interest selection in histopathological images using subspace and multi-objective stream clustering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The advances of deep learning in histopathology show the ability to assist pathologists in reducing workload and avoiding subjective decisions. Such algorithms lead to a more reliable diagnosis because they give computer-based second opinions to the clinician. However, in histopathology cancer image analysis, pathologists mostly diagnose the pathology as positive if a small part of it is considered cancer tissue. These small parts are called regions of interest or patches. Finding the relevant patches is crucial as it can save computation time and memory. Also, deep learning systems can receive only small inputs, and these patches represent the best input. This paper proposes a new clustering algorithm for the patch selection based on subspace clustering. This technique discovers clusters embedded in multiple, overlapping subspaces of high-dimensional data. The proposed algorithm manages to find the data’s best partitioning and the images’ relevant patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://github.com/mhahsler/streamMOA.

  2. https://iciar2018-challenge.grand-challenge.org/Dataset/.

  3. https://mitos-atypia-14.grand-challenge.org/Dataset/.

  4. https://github.com/Clustering4Ever/Clustering4Ever.

References

  1. Mescher, A.L.: Junqueira’s Basic Histology: Text and Atlas. McGraw-Hill Education, New York (2018)

    Google Scholar 

  2. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11, 56–76 (2007)

    Article  Google Scholar 

  3. Law, M.H., Topchy, A.P., Jain, A.K.: Multiobjective data clustering. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)

  4. Jimenez-del Toro, O., Otálora, S., Andersson, M., Eurén, K., Hedlund, M., Rousson, M., Müller, H., Atzori, M.: Analysis of histopathology images: from traditional machine learning to deep learning. In: Biomedical Texture Analysis, pp. 281–314. Elsevier (2017)

  5. Zhu, X., Yao, J., Zhu, F., Huang, J.: Wsisa: Making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7234–7242 (2017)

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks (2012). In: Advances in Neural Information Processing Systems, pp. 1097–1105

  7. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., Donovan, M., et al.: Bach: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019)

    Article  Google Scholar 

  8. Xu, J., Zhou, C., Lang, B., Liu, Q.: Deep learning for histopathological image analysis: towards computerized diagnosis on cancers. In: Deep Learning and Convolutional Neural Networks for Medical Image Computing, pp. 73–95. Springer (2017)

  9. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)

    Article  Google Scholar 

  10. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

  11. Deng, Z., Choi, K.-S., Jiang, Y., Wang, J., Wang, S.: A survey on soft subspace clustering. Inf. Sci. 348, 84–106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52, 217–237 (2003)

    Article  MATH  Google Scholar 

  13. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27, 657–668 (2005)

    Article  Google Scholar 

  14. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor. Newsl. 6, 90–105 (2004)

    Article  Google Scholar 

  15. Keller, A., Klawonn, F.: Fuzzy clustering with weighting of data variables. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 8, 735–746 (2000)

    Article  MATH  Google Scholar 

  16. Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognit. 37, 943–952 (2004)

    Article  MATH  Google Scholar 

  17. Gançarski, P., Blansche, A., Wania, A.: Comparison between two coevolutionary feature weighting algorithms in clustering. Pattern Recognit. 41, 983–994 (2008)

    Article  MATH  Google Scholar 

  18. Domeniconi, C., Al-Razgan, M.: Weighted cluster ensembles: methods and analysis. ACM Trans. Knowl. Discov. Data (TKDD) 2, 17 (2009)

    Google Scholar 

  19. Garza-Fabre, M., Handl, J., Knowles, J.: An improved and more scalable evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 22, 515–535 (2017)

    Article  Google Scholar 

  20. İnkaya, T., Kayalıgil, S., Özdemirel, N.E.: Ant colony optimization based clustering methodology. Appl. Soft Comput. 28, 301–311 (2015)

    Article  Google Scholar 

  21. Luo, J., Jiao, L., Shang, R., Liu, F.: Learning simultaneous adaptive clustering and classification via MOEA. Pattern Recognit. 60, 37–50 (2016)

    Article  MATH  Google Scholar 

  22. Gong, C., Chen, H., He, W., Zhang, Z.: Improved multi-objective clustering algorithm using particle swarm optimization. PLoS ONE 12, e0188815 (2017)

    Article  Google Scholar 

  23. Wang, R., Lai, S., Wu, G., Xing, L., Wang, L., Ishibuchi, H.: Multi-clustering via evolutionary multi-objective optimization. Inf. Sci. 450, 128–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saini, N., Saha, S., Harsh, A., Bhattacharyya, P.: Sophisticated SOM based genetic operators in multi-objective clustering framework. Appl. Intell. 49, 1803–1822 (2019)

    Article  Google Scholar 

  25. Dutta, D., Sil, J., Dutta, P.: Automatic clustering by multi-objective genetic algorithm with numeric and categorical features. Expert Syst. Appl. 137, 357–379 (2019)

  26. Kuo, R., Zulvia, F.E.: Multi-objective cluster analysis using a gradient evolution algorithm. Soft Comput. 24, 1–15 (2020)

  27. Chen, L., Duan, H., Fan, Y., Wei, C.: Multi-objective clustering analysis via combinatorial pigeon inspired optimization. Sci. China Technol. Sci. 1–12 (2020)

  28. McIntyre, A., Heywood, M.: Moge: Gp classification problem decomposition using multi-objective optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 863–870

  29. Niu, B., Zhu, Y., He, X., Wu, H.: MCPSO: a multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput. 185, 1050–1062 (2007)

    MATH  Google Scholar 

  30. Xia, H., Zhuang, J., Yu, D.: Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data. Pattern Recognit. 46, 2562–2575 (2013)

    Article  MATH  Google Scholar 

  31. Attaoui, M.O., Azzag, H., Lebbah, M., Keskes, N: Subspace data stream clustering with global and local weighting models. Neural Comput. Appl. 33, 1–22 (2020)

  32. MacQueen, J. et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 14, Oakland, CA, USA, pp. 281–297 (1967)

  33. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  34. de Andrade Silva, J., Hruschka, E.R.: Extending k-means-based algorithms for evolving data streams with variable number of clusters. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 2, pp. 14–19. IEEE (2011)

  35. Tu, L., Chen, Y.: Stream data clustering based on grid density and attraction. ACM Trans. Knowl. Discov. from Data (TKDD) 3, 1–27 (2009)

    Article  Google Scholar 

  36. Hahsler, M., Bolaños, M.: Clustering data streams based on shared density between micro-clusters. IEEE Trans. Knowl. Data Eng. 28, 1449–1461 (2016)

    Article  Google Scholar 

  37. Cao, F., Estert, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM, pp. 328–339

  38. Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: -a framework for clustering evolving data streams. In: Proceedings 2003 VLDB Conference. Elsevier, pp. 81–92

  39. Souza, V.M.A., Silva, D.F., Gama, J., Batista, G.E.A.P.A.: Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of SIAM International Conference on Data Mining (SDM), pp. 873–881

  40. Dyer, K.B., Capo, R., Polikar, R.: Compose: a semisupervised learning framework for initially labeled nonstationary streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25, 12–26 (2013)

    Article  Google Scholar 

  41. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  MATH  Google Scholar 

  43. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63, 1455–1462 (2015)

    Article  Google Scholar 

  44. Shamir, L., Orlov, N., Eckley, D.M., Macura, T.J., Goldberg, I.G.: Iicb: a proposed benchmark suite for biological image analysis. Med. Biol. Eng. Comput. 46(2008), 943–947 (2008)

    Article  Google Scholar 

  45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

  46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  47. Nawaz, W., Ahmed, S., Tahir, A., Khan, H.A.: Classification of breast cancer histology images using alexnet. In: International Conference Image Analysis and Recognition, pp. 869–876. Springer (2018)

  48. Nanni, L., Brahnam, S., Maguolo, G.: Data augmentation for building an ensemble of convolutional neural networks. In: Innovation in Medicine and Healthcare Systems, and Multimedia. pp. 61–69, Springer (2019)

  49. Kaymak, S., Helwan, A., Uzun, D.: Breast cancer image classification using artificial neural networks. Procedia Comput. Sci. 120, 126–131 (2017)

    Article  Google Scholar 

  50. Ferreira, C.A., Melo, T., Sousa, P., Meyer, M.I., Shakibapour, E., Costa, P., Campilho, A.: Classification of breast cancer histology images through transfer learning using a pre-trained inception resnet v2. In: International Conference Image Analysis and Recognition, pp. 763–770. Springer (2018)

  51. Benhammou, Y., Tabik, S., Achchab, B., Herrera, F.: A first study exploring the performance of the state-of-the art CNN model in the problem of breast cancer. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, pp. 1–6

  52. Sun, J., Binder, A.: Comparison of deep learning architectures for h&e histopathology images. In: 2017 IEEE Conference on Big Data and Analytics (ICBDA), pp. 43–48. IEEE

  53. Zhi, W., Yueng, H.W.F., Chen, Z., Zandavi, S.M., Lu, Z., Chung, Y.Y.: Using transfer learning with convolutional neural networks to diagnose breast cancer from histopathological images. In: International Conference on Neural Information Processing, pp. 669–676. Springer (2017)

  54. Nanni, L., Lumini, A., Ghidoni, S., Maguolo, G.: Stochastic selection of activation layers for convolutional neural networks. Sensors 20, 1626 (2020)

    Article  Google Scholar 

  55. Maguolo, G., Nanni, L., Ghidoni, S.: Ensemble of convolutional neural networks trained with different activation functions. arXiv preprint arXiv:1905.02473 (2019)

Download references

Acknowledgements

We address with a special thanks Mm. Rezki Hanene, Anatomo-Pathologist at the Hospital of Sidi Bel Abbes Algeria for giving us medical significance to our results. We thank her for her availability and the time she gave to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Oualid Attaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attaoui, M.O., Dif, N., Azzag, H. et al. Regions of interest selection in histopathological images using subspace and multi-objective stream clustering. Vis Comput 39, 1683–1701 (2023). https://doi.org/10.1007/s00371-022-02436-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02436-y

Keywords

Navigation