Skip to main content
Log in

Depth-wise Squeeze and Excitation Block-based Efficient-Unet model for surface defect detection

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Detection of surface defects in manufacturing systems is crucial for product quality. Detection of surface defects with high accuracy can prevent financial and time losses. Recently, efforts to develop high-performance automatic surface defect detection systems using computer vision and machine-learning methods have become prominent. In line with this purpose, this paper proposed a novel approach based on Depth-wise Squeeze and Excitation Block-based Efficient-Unet (DSEB-EUNet) for automatic surface defect detection. The proposed model consists of an encoder–decoder, the basic structure of the Unet architecture, and a Depth-wise Squeeze and Excitation Block added to the skip-connection of Unet. First, in the encoder part of the proposed model, low-level and high-level features were obtained by the EfficientNet network. Then, these features were transferred to the Depth-wise Squeeze and Excitation Block. The proposed DSEB based on the combination of Squeeze-Excitation and Depth-wise Separable Convolution enabled to reveal of critical information by weighting the features with a lightweight gating mechanism for surface defect detection. Besides, in the decoder part of the proposed model, the structure called Multi-level Feature Concatenated Block (MFCB) transferred the weighted features to the last layers without losing spatial detail. Finally, pixel-level defect detection was performed using the sigmoid function. The proposed model was tested using three general datasets for surface defect detection. In experimental works, the best F1-scores for MT, DAGM, and AITEX datasets using the proposed DSEB-EUNet architecture were 89.20%, 85.97%, and 90.39%, respectively. These results showed the proposed model outperforms higher performance compared to state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dong, H., Song, K., He, Y., Xu, J., Yan, Y., Meng, Q.: PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Trans. Industr. Inf. 16, 7448–7458 (2020). https://doi.org/10.1109/TII.2019.2958826

    Article  Google Scholar 

  2. Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36, 85–96 (2020). https://doi.org/10.1007/s00371-018-1588-5

    Article  Google Scholar 

  3. Uzen, H., Turkoglu, M., Hanbay, D.: Texture defect classification with multiple pooling and filter ensemble based on deep neural network. Expert Syst. Appl. 175, 114838 (2021). https://doi.org/10.1016/j.eswa.2021.114838

    Article  Google Scholar 

  4. Hu, W., Wang, T., Wang, Y., Chen, Z., Huang, G.: LE–MSFE–DDNet: a defect detection network based on low-light enhancement and multi-scale feature extraction. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02210-6

    Article  Google Scholar 

  5. Uzen, H., Firat, H., Karci, A., Hanbay, D.: Automatic thresholding method developed with entropy for fabric defect detection. In: 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. Institute of Electrical and Electronics Engineers Inc. (2019)

  6. Sari-Sarraf, H., Goddard, J.S.: Vision system for on-loom fabric inspection. IEEE Trans. Ind. Appl. 35, 1252–1259 (1999). https://doi.org/10.1109/28.806035

    Article  Google Scholar 

  7. Mak, K.L., Peng, P., Lau, H.Y.K.: Optimal morphological filter design for fabric defect detection. In: 2005 IEEE International Conference on Industrial Technology. pp. 799–804. IEEE (2005)

  8. Kaddah, W., Elbouz, M., Ouerhani, Y., Alfalou, A., Desthieux, M.: Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images. Vis. Comput. 36, 1369–1384 (2020). https://doi.org/10.1007/s00371-019-01742-2

    Article  Google Scholar 

  9. Mingde, B., Zhigang, S., Yesong, L.: Textural fabric defect detection using adaptive quantized gray-level co-occurrence matrix and support vector description data. Inf. Technol. J. 11, 673–685 (2012). https://doi.org/10.3923/itj.2012.673.685

    Article  Google Scholar 

  10. Hanbay, K., Talu, M.F., Özgüven, Ö.F.: Fabric defect detection systems and methods—a systematic literature review. Optik 127, 11960–11973 (2016). https://doi.org/10.1016/j.ijleo.2016.09.110

    Article  Google Scholar 

  11. Bissi, L., Baruffa, G., Placidi, P., Ricci, E., Scorzoni, A., Valigi, P.: Automated defect detection in uniform and structured fabrics using Gabor filters and PCA. J. Vis. Commun. Image Represent. 24, 838–845 (2013). https://doi.org/10.1016/j.jvcir.2013.05.011

    Article  Google Scholar 

  12. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69, 1493–1504 (2020). https://doi.org/10.1109/TIM.2019.2915404

    Article  Google Scholar 

  13. Dai, W., Erdt, M., Sourin, A.: Detection and segmentation of image anomalies based on unsupervised defect reparation. Vis. Comput. 2021(37), 1–10 (2021). https://doi.org/10.1007/S00371-021-02257-5

    Article  Google Scholar 

  14. Pastor-López, I., Sanz, B., Tellaeche, A., Psaila, G., de la Puerta, J.G., Bringas, P.G.: Quality assessment methodology based on machine learning with small datasets: industrial castings defects. Neurocomputing 456, 622–628 (2021). https://doi.org/10.1016/j.neucom.2020.08.094

    Article  Google Scholar 

  15. Qiu, L., Wu, X., Yu, Z.: A high-efficiency fully convolutional networks for pixel-wise surface defect detection. IEEE Access. 7, 15884–15893 (2019). https://doi.org/10.1109/ACCESS.2019.2894420

    Article  Google Scholar 

  16. Ruan, L., Gao, B., Wu, S., Woo, W.L.: DeftectNet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 417, 441–457 (2020). https://doi.org/10.1016/j.neucom.2020.07.093

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 234–241 (2015)

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (NIPS 2012). pp. 1097–1105 (2012)

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Inf. Softw. Technol. 51, 769–784 (2014)

    Google Scholar 

  20. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. arXiv preprint arXiv:1612.03144 (2016)

  21. Augustauskas, R., Lipnickas, A.: Improved pixel-level pavement-defect segmentation using a deep autoencoder. Sensors. 20, 2557 (2020). https://doi.org/10.3390/s20092557

    Article  Google Scholar 

  22. Cao, J., Yang, G., Yang, X.: A pixel-level segmentation convolutional neural network based on deep feature fusion for surface defect detection. IEEE Trans. Instrument. Measur. (2021). https://doi.org/10.1109/TIM.2020.3033726

    Article  Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2014)

    Google Scholar 

  24. Damacharla, P., V., A.R.M., Ringenberg, J., Javaid, A.Y.: TLU-Net: A Deep Learning Approach for Automatic Steel Surface Defect Detection. arXiv preprint arXiv:2101.06915 (2021)

  25. Jing, J., Wang, Z., Rätsch, M., Zhang, H.: Mobile-Unet: an efficient convolutional neural network for fabric defect detection. Textile Res. J. (2020). https://doi.org/10.1177/0040517520928604

    Article  Google Scholar 

  26. Luo, Q., Gao, B., Woo, W.L., Yang, Y.: Temporal and spatial deep learning network for infrared thermal defect detection. NDT&E Int. 108, 102164 (2019). https://doi.org/10.1016/j.ndteint.2019.102164

    Article  Google Scholar 

  27. Zhang, D., Song, K., Xu, J., He, Y., Niu, M., Yan, Y.: MCnet: multiple context information segmentation network of no-service rail surface defects. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/TIM.2020.3040890

    Article  Google Scholar 

  28. Cao, X., Yao, B., Chen, B., Wang, Y.: Multi-defect detection for magnetic tile based on SE-U-Net. ISPCE-CN 2020 - IEEE International Symposium on Product Compliance Engineering-Asia 2020. (2020). https://doi.org/10.1109/ISPCE-CN51288.2020.9321855

  29. Zhang, Z., Lv, C., Sun, M., Wang, Z.: Reliable and robust weakly supervised attention networks for surface defect detection. Proceedings - 2020 7th International Conference on Dependable Systems and Their Applications, DSA 2020. 407–414 (2020). https://doi.org/10.1109/DSA51864.2020.00071

  30. Fu, X., Li, K., Liu, J., Li, K., Zeng, Z., Chen, C.: A two-stage attention aware method for train bearing shed oil inspection based on convolutional neural networks. Neurocomputing 380, 212–224 (2020). https://doi.org/10.1016/J.NEUCOM.2019.11.002

    Article  Google Scholar 

  31. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applications. (2017)

  32. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023 (2017)

    Article  Google Scholar 

  33. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE Trans. Med. Imaging 38, 540–549 (2019). https://doi.org/10.1109/TMI.2018.2867261

    Article  Google Scholar 

  34. Tan, M., Le, Q. V.: EfficientNet: rethinking model scaling for convolutional neural networks. 36th International Conference on Machine Learning, ICML 2019. 2019, 10691–10700 (2019)

  35. Luo, Q., Fang, X., Liu, L., Yang, C., Sun, Y.: Automated visual defect detection for flat steel surface: a survey. IEEE Trans. Instrum. Meas. 69, 626–644 (2020). https://doi.org/10.1109/TIM.2019.2963555

    Article  Google Scholar 

  36. Zheng, X., Zheng, S., Kong, Y., Chen, J.: Recent advances in surface defect inspection of industrial products using deep learning techniques. Int. J. Adv. Manuf. Technol. 113, 35–58 (2021). https://doi.org/10.1007/s00170-021-06592-8

    Article  Google Scholar 

  37. Yang, T., Zhang, T., Huang, L.: Detection of defects in voltage-dependent resistors using stacked-block-based convolutional neural networks. Vis. Comput. 37, 1559–1567 (2021). https://doi.org/10.1007/s00371-020-01901-w

    Article  Google Scholar 

  38. Djukic, D., Spuzic, S.: Statistical discriminator of surface defects on hot rolled steel. In: Proceedings of Image and Vision Computing, pp. 158–163. University of Waikato, Hamilton, New Zealand (2007)

    Google Scholar 

  39. Tsai, D.M., Chen, M.C., Li, W.C., Chiu, W.Y.: A fast regularity measure for surface defect detection. Mach. Vis. Appl. 23, 869–886 (2012). https://doi.org/10.1007/s00138-011-0403-3

    Article  Google Scholar 

  40. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  41. Wang, Y., Xia, H., Yuan, X., Li, L., Sun, B.: Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimed. Tools Appl. 77, 16741–16770 (2018). https://doi.org/10.1007/s11042-017-5238-0

    Article  Google Scholar 

  42. Ai, Y., Xu, K.: Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections. J. Iron Steel Res. Int. 20, 80–86 (2013). https://doi.org/10.1016/S1006-706X(13)60102-8

    Article  Google Scholar 

  43. Choi, D.C., Jeon, Y.J., Yun, J.P., Kim, S.W.: Pinhole detection in steel slab images using Gabor filter and morphological features. Appl. Opt. 50, 5122–5129 (2011). https://doi.org/10.1364/AO.50.005122

    Article  Google Scholar 

  44. Ghorai, S., Mukherjee, A., Gangadaran, M., Dutta, P.K.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 62, 612–621 (2013). https://doi.org/10.1109/TIM.2012.2218677

    Article  Google Scholar 

  45. Gayubo, F., González, J.L., De La Fuente, E., Miguel, F., Perán, J.R.: On-line machine vision system for detect split defects in sheet-metal forming processes. In: Proceedings - International Conference on Pattern Recognition. pp. 723–726 (2006)

  46. Yang, J., Li, X., Xu, J., Cao, Y., Zhang, Y., Wang, L., Jiang, S.: Development of an optical defect inspection algorithm based on an active contour model for large steel roller surfaces. Appl. Opt. 57, 2490 (2018). https://doi.org/10.1364/ao.57.002490

    Article  Google Scholar 

  47. Yan, H., Paynabar, K., Shi, J.: Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics 59, 102–114 (2017). https://doi.org/10.1080/00401706.2015.1102764

    Article  MathSciNet  Google Scholar 

  48. Hanbay, K., Golgiyaz, S., Talu, M.F.: Real time fabric defect detection system on Matlab and C++/Opencv platforms. In: 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). pp. 1–8. IEEE, Malatya (2017)

  49. Lv, X., Duan, F., Jiang, J.J., Fu, X., Gan, L.: Deep metallic surface defect detection: the new benchmark and detection network. Sensors (Switzerland). (2020). https://doi.org/10.3390/s20061562

    Article  Google Scholar 

  50. Ari, A., Hanbay, D.: Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 26, 2275–2286 (2018). https://doi.org/10.3906/elk-1801-8

    Article  Google Scholar 

  51. Dai, W., Erdt, M., Sourin, A.: Self-supervised pairing image clustering for automated quality control. Vis. Comput. 1, 1–14 (2021). https://doi.org/10.1007/s00371-021-02137-y

    Article  Google Scholar 

  52. Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., Riess, C.: Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 185, 455–468 (2018). https://doi.org/10.1016/j.solener.2019.02.067

    Article  Google Scholar 

  53. Masci, J., Meier, U., Fricout, G., Schmidhuber, J.: Multi-scale pyramidal pooling network for generic steel defect classification. In: Proceedings of the International Joint Conference on Neural Networks (2013)

  54. Natarajan, V., Hung, T.Y., Vaikundam, S., Chia, L.T.: Convolutional networks for voting-based anomaly classification in metal surface inspection. In: Proceedings of the IEEE International Conference on Industrial Technology. pp. 986–991. Institute of Electrical and Electronics Engineers Inc. (2017)

  55. Shanmugamani, R., Sadique, M., Ramamoorthy, B.: Detection and classification of surface defects of gun barrels using computer vision and machine learning. Measurement 60, 222–230 (2015). https://doi.org/10.1016/J.MEASUREMENT.2014.10.009

    Article  Google Scholar 

  56. Park, J.K., Kwon, B.K., Park, J.H., Kang, D.J.: Machine learning-based imaging system for surface defect inspection. Int. J. Precis. Eng. Manuf.- Green Technol. 3, 303–310 (2016). https://doi.org/10.1007/s40684-016-0039-x

    Article  Google Scholar 

  57. Cheon, S., Lee, H., Kim, C.O., Lee, S.H.: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Trans. Semicond. Manuf. 32, 163–170 (2019). https://doi.org/10.1109/TSM.2019.2902657

    Article  Google Scholar 

  58. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G.: Steel defect classification with Max-Pooling Convolutional Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks (2012)

  59. Chen, P.H., Ho, S.S.: Is overfeat useful for image-based surface defect classification tasks? In: Proceedings - International Conference on Image Processing, ICIP. pp. 749–753. IEEE Computer Society (2016)

  60. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings. (2013)

  61. Lin, H., Li, B., Wang, X., Shu, Y., Niu, S.: Automated defect inspection of LED chip using deep convolutional neural network. J. Intell. Manuf. 30, 2525–2534 (2019). https://doi.org/10.1007/s10845-018-1415-x

    Article  Google Scholar 

  62. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  63. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single shot MultiBox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9905 LNCS, 21–37 (2015). https://doi.org/10.1007/978-3-319-46448-0_2

  64. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-December, 779–788 (2015)

  65. Mujeeb, A., Dai, W., Erdt, M., Sourin, A.: Unsupervised surface defect detection using deep autoencoders and data augmentation. In: Proceedings - 2018 International Conference on Cyberworlds, CW 2018. pp. 391–398. Institute of Electrical and Electronics Engineers Inc. (2018)

  66. Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface defects based on improved YOLO detection network. IFAC-PapersOnLine. 51, 76–81 (2018). https://doi.org/10.1016/j.ifacol.2018.09.412

    Article  Google Scholar 

  67. Li, Y., Huang, H., Xie, Q., Yao, L., Chen, Q.: Research on a surface defect detection algorithm based on mobileNet-SSD. Appl. Sci. 8, 1678 (2018). https://doi.org/10.3390/app8091678

    Article  Google Scholar 

  68. Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. Manuf. Technol. 65, 417–420 (2016). https://doi.org/10.1016/j.cirp.2016.04.072

    Article  Google Scholar 

  69. Xu, Y., Li, D., Xie, Q., Wu, Q., Wang, J.: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN. Measurement 178, 109316 (2021). https://doi.org/10.1016/J.MEASUREMENT.2021.109316

    Article  Google Scholar 

  70. Katsamenis, I., Protopapadakis, E., Doulamis, A., Doulamis, N., Voulodimos, A.: Pixel-level corrosion detection on metal constructions by fusion of deep learning semantic and contour segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 12509 LNCS, 160–169 (2020)

  71. Aslam, Y., Santhi, N., Ramasamy, N., Ramar, K.: Localization and segmentation of metal cracks using deep learning. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01803-8

    Article  Google Scholar 

  72. Chen, H., Hu, Q., Zhai, B., Chen, H., Liu, K.: A robust weakly supervised learning of deep Conv-Nets for surface defect inspection. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04819-5

    Article  Google Scholar 

  73. Uzen, H., Yeroglu, C., Hanbay, D.: Development of CNN architecture for Honey Bees disease condition. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). pp. 1–5. IEEE, Malatya, Turkey (2019)

  74. Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359 (2020)

  75. Huynh, L.D., Boutry, N.: A U-Net++ with pre-trained efficientnet backbone for segmentation of diseases and artifacts in endoscopy images and videos. CEUR Workshop Proc. 2595, 13–17 (2020)

    Google Scholar 

  76. Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J.: A public fabric database for defect detection methods and results. Autex Res. J. (2019). https://doi.org/10.2478/aut-2019-0035

    Article  Google Scholar 

  77. Wieler, M., Hahn, T.: Weakly Supervised Learning for Industrial Optical Inspection | Heidelberg Collaboratory for Image Processing (HCI), https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection

  78. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing, VCIP 2017. 2018-January, 1–4 (2018). https://doi.org/10.1109/VCIP.2017.8305148

  79. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-January, 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660

  80. Shi, J., Dang, J., Cui, M., Zuo, R., Shimizu, K., Tsunoda, A., Suzuki, Y.: Improvement of damage segmentation based on pixel-level data balance using VGG-Unet. Appl Sci 11, 518 (2021). https://doi.org/10.3390/APP11020518

    Article  Google Scholar 

  81. Oktay, O., Schlemper, J., Folgoc, L. le, Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B., Rueckert, D.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999v3 (2018)

  82. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv preprint arXiv:2102.04306v1 (2021)

  83. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. arXiv preprint arXiv:2105.05537 (2021)

  84. Yakubovskiy, P.: Segmentation models. https://github.com/qubvel/segmentation_models

  85. Liu, J., Song, K., Feng, M., Yan, Y., Tu, Z., Zhu, L.: Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection. Opt. Lasers Eng. 136, 106324 (2021). https://doi.org/10.1016/j.optlaseng.2020.106324

    Article  Google Scholar 

  86. Zhou, Q., Mei, J., Zhang, Q., Wang, S., Chen, G.: Semi-supervised fabric defect detection based on image reconstruction and density estimation. Text. Res. J. 91, 962–972 (2021). https://doi.org/10.1177/0040517520966733

    Article  Google Scholar 

  87. Yuxiang, W., Shiyi, M., Xiang, X., Shanshan, H.: DCSNet: a surface defect classification and segmentation model by one-class learning. J. Phys: Conf. Ser. 1914, 012037 (2021). https://doi.org/10.1088/1742-6596/1914/1/012037

    Article  Google Scholar 

  88. Yuxin Li, V., Ostertag, B.J., Ross, A.E., Li, J., Wang, X., Cui, H., Rong-qiang, L., Ming-hui, L., Jia-chen, S., Yi-bin, L.: Fabric defect detection method based on improved U-Net. J. Phys. Conf. Ser. 1948, 012160 (2021). https://doi.org/10.1088/1742-6596/1948/1/012160

    Article  Google Scholar 

  89. Seçkin, A.Ç., Seçkin, M.: Detection of fabric defects with intertwined frame vector feature extraction. Alex. Eng. J. 61, 2887–2898 (2022). https://doi.org/10.1016/J.AEJ.2021.08.017

    Article  Google Scholar 

Download references

Funding

This work was supported by the Inonu University Scientific Research Projects Coordination [Grant Number FDK-2021–2725].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Üzen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Source code

The Python code for our proposed method is available on the link: https://github.com/hn42/DSEB-EUnet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üzen, H., Turkoglu, M., Aslan, M. et al. Depth-wise Squeeze and Excitation Block-based Efficient-Unet model for surface defect detection. Vis Comput 39, 1745–1764 (2023). https://doi.org/10.1007/s00371-022-02442-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02442-0

Keywords