Abstract
Detection of surface defects in manufacturing systems is crucial for product quality. Detection of surface defects with high accuracy can prevent financial and time losses. Recently, efforts to develop high-performance automatic surface defect detection systems using computer vision and machine-learning methods have become prominent. In line with this purpose, this paper proposed a novel approach based on Depth-wise Squeeze and Excitation Block-based Efficient-Unet (DSEB-EUNet) for automatic surface defect detection. The proposed model consists of an encoder–decoder, the basic structure of the Unet architecture, and a Depth-wise Squeeze and Excitation Block added to the skip-connection of Unet. First, in the encoder part of the proposed model, low-level and high-level features were obtained by the EfficientNet network. Then, these features were transferred to the Depth-wise Squeeze and Excitation Block. The proposed DSEB based on the combination of Squeeze-Excitation and Depth-wise Separable Convolution enabled to reveal of critical information by weighting the features with a lightweight gating mechanism for surface defect detection. Besides, in the decoder part of the proposed model, the structure called Multi-level Feature Concatenated Block (MFCB) transferred the weighted features to the last layers without losing spatial detail. Finally, pixel-level defect detection was performed using the sigmoid function. The proposed model was tested using three general datasets for surface defect detection. In experimental works, the best F1-scores for MT, DAGM, and AITEX datasets using the proposed DSEB-EUNet architecture were 89.20%, 85.97%, and 90.39%, respectively. These results showed the proposed model outperforms higher performance compared to state-of-the-art approaches.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dong, H., Song, K., He, Y., Xu, J., Yan, Y., Meng, Q.: PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Trans. Industr. Inf. 16, 7448–7458 (2020). https://doi.org/10.1109/TII.2019.2958826
Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36, 85–96 (2020). https://doi.org/10.1007/s00371-018-1588-5
Uzen, H., Turkoglu, M., Hanbay, D.: Texture defect classification with multiple pooling and filter ensemble based on deep neural network. Expert Syst. Appl. 175, 114838 (2021). https://doi.org/10.1016/j.eswa.2021.114838
Hu, W., Wang, T., Wang, Y., Chen, Z., Huang, G.: LE–MSFE–DDNet: a defect detection network based on low-light enhancement and multi-scale feature extraction. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02210-6
Uzen, H., Firat, H., Karci, A., Hanbay, D.: Automatic thresholding method developed with entropy for fabric defect detection. In: 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. Institute of Electrical and Electronics Engineers Inc. (2019)
Sari-Sarraf, H., Goddard, J.S.: Vision system for on-loom fabric inspection. IEEE Trans. Ind. Appl. 35, 1252–1259 (1999). https://doi.org/10.1109/28.806035
Mak, K.L., Peng, P., Lau, H.Y.K.: Optimal morphological filter design for fabric defect detection. In: 2005 IEEE International Conference on Industrial Technology. pp. 799–804. IEEE (2005)
Kaddah, W., Elbouz, M., Ouerhani, Y., Alfalou, A., Desthieux, M.: Automatic darkest filament detection (ADFD): a new algorithm for crack extraction on two-dimensional pavement images. Vis. Comput. 36, 1369–1384 (2020). https://doi.org/10.1007/s00371-019-01742-2
Mingde, B., Zhigang, S., Yesong, L.: Textural fabric defect detection using adaptive quantized gray-level co-occurrence matrix and support vector description data. Inf. Technol. J. 11, 673–685 (2012). https://doi.org/10.3923/itj.2012.673.685
Hanbay, K., Talu, M.F., Özgüven, Ö.F.: Fabric defect detection systems and methods—a systematic literature review. Optik 127, 11960–11973 (2016). https://doi.org/10.1016/j.ijleo.2016.09.110
Bissi, L., Baruffa, G., Placidi, P., Ricci, E., Scorzoni, A., Valigi, P.: Automated defect detection in uniform and structured fabrics using Gabor filters and PCA. J. Vis. Commun. Image Represent. 24, 838–845 (2013). https://doi.org/10.1016/j.jvcir.2013.05.011
He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69, 1493–1504 (2020). https://doi.org/10.1109/TIM.2019.2915404
Dai, W., Erdt, M., Sourin, A.: Detection and segmentation of image anomalies based on unsupervised defect reparation. Vis. Comput. 2021(37), 1–10 (2021). https://doi.org/10.1007/S00371-021-02257-5
Pastor-López, I., Sanz, B., Tellaeche, A., Psaila, G., de la Puerta, J.G., Bringas, P.G.: Quality assessment methodology based on machine learning with small datasets: industrial castings defects. Neurocomputing 456, 622–628 (2021). https://doi.org/10.1016/j.neucom.2020.08.094
Qiu, L., Wu, X., Yu, Z.: A high-efficiency fully convolutional networks for pixel-wise surface defect detection. IEEE Access. 7, 15884–15893 (2019). https://doi.org/10.1109/ACCESS.2019.2894420
Ruan, L., Gao, B., Wu, S., Woo, W.L.: DeftectNet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing 417, 441–457 (2020). https://doi.org/10.1016/j.neucom.2020.07.093
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 234–241 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (NIPS 2012). pp. 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Inf. Softw. Technol. 51, 769–784 (2014)
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. arXiv preprint arXiv:1612.03144 (2016)
Augustauskas, R., Lipnickas, A.: Improved pixel-level pavement-defect segmentation using a deep autoencoder. Sensors. 20, 2557 (2020). https://doi.org/10.3390/s20092557
Cao, J., Yang, G., Yang, X.: A pixel-level segmentation convolutional neural network based on deep feature fusion for surface defect detection. IEEE Trans. Instrument. Measur. (2021). https://doi.org/10.1109/TIM.2020.3033726
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2014)
Damacharla, P., V., A.R.M., Ringenberg, J., Javaid, A.Y.: TLU-Net: A Deep Learning Approach for Automatic Steel Surface Defect Detection. arXiv preprint arXiv:2101.06915 (2021)
Jing, J., Wang, Z., Rätsch, M., Zhang, H.: Mobile-Unet: an efficient convolutional neural network for fabric defect detection. Textile Res. J. (2020). https://doi.org/10.1177/0040517520928604
Luo, Q., Gao, B., Woo, W.L., Yang, Y.: Temporal and spatial deep learning network for infrared thermal defect detection. NDT&E Int. 108, 102164 (2019). https://doi.org/10.1016/j.ndteint.2019.102164
Zhang, D., Song, K., Xu, J., He, Y., Niu, M., Yan, Y.: MCnet: multiple context information segmentation network of no-service rail surface defects. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/TIM.2020.3040890
Cao, X., Yao, B., Chen, B., Wang, Y.: Multi-defect detection for magnetic tile based on SE-U-Net. ISPCE-CN 2020 - IEEE International Symposium on Product Compliance Engineering-Asia 2020. (2020). https://doi.org/10.1109/ISPCE-CN51288.2020.9321855
Zhang, Z., Lv, C., Sun, M., Wang, Z.: Reliable and robust weakly supervised attention networks for surface defect detection. Proceedings - 2020 7th International Conference on Dependable Systems and Their Applications, DSA 2020. 407–414 (2020). https://doi.org/10.1109/DSA51864.2020.00071
Fu, X., Li, K., Liu, J., Li, K., Zeng, Z., Chen, C.: A two-stage attention aware method for train bearing shed oil inspection based on convolutional neural networks. Neurocomputing 380, 212–224 (2020). https://doi.org/10.1016/J.NEUCOM.2019.11.002
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applications. (2017)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023 (2017)
Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE Trans. Med. Imaging 38, 540–549 (2019). https://doi.org/10.1109/TMI.2018.2867261
Tan, M., Le, Q. V.: EfficientNet: rethinking model scaling for convolutional neural networks. 36th International Conference on Machine Learning, ICML 2019. 2019, 10691–10700 (2019)
Luo, Q., Fang, X., Liu, L., Yang, C., Sun, Y.: Automated visual defect detection for flat steel surface: a survey. IEEE Trans. Instrum. Meas. 69, 626–644 (2020). https://doi.org/10.1109/TIM.2019.2963555
Zheng, X., Zheng, S., Kong, Y., Chen, J.: Recent advances in surface defect inspection of industrial products using deep learning techniques. Int. J. Adv. Manuf. Technol. 113, 35–58 (2021). https://doi.org/10.1007/s00170-021-06592-8
Yang, T., Zhang, T., Huang, L.: Detection of defects in voltage-dependent resistors using stacked-block-based convolutional neural networks. Vis. Comput. 37, 1559–1567 (2021). https://doi.org/10.1007/s00371-020-01901-w
Djukic, D., Spuzic, S.: Statistical discriminator of surface defects on hot rolled steel. In: Proceedings of Image and Vision Computing, pp. 158–163. University of Waikato, Hamilton, New Zealand (2007)
Tsai, D.M., Chen, M.C., Li, W.C., Chiu, W.Y.: A fast regularity measure for surface defect detection. Mach. Vis. Appl. 23, 869–886 (2012). https://doi.org/10.1007/s00138-011-0403-3
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4
Wang, Y., Xia, H., Yuan, X., Li, L., Sun, B.: Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimed. Tools Appl. 77, 16741–16770 (2018). https://doi.org/10.1007/s11042-017-5238-0
Ai, Y., Xu, K.: Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections. J. Iron Steel Res. Int. 20, 80–86 (2013). https://doi.org/10.1016/S1006-706X(13)60102-8
Choi, D.C., Jeon, Y.J., Yun, J.P., Kim, S.W.: Pinhole detection in steel slab images using Gabor filter and morphological features. Appl. Opt. 50, 5122–5129 (2011). https://doi.org/10.1364/AO.50.005122
Ghorai, S., Mukherjee, A., Gangadaran, M., Dutta, P.K.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 62, 612–621 (2013). https://doi.org/10.1109/TIM.2012.2218677
Gayubo, F., González, J.L., De La Fuente, E., Miguel, F., Perán, J.R.: On-line machine vision system for detect split defects in sheet-metal forming processes. In: Proceedings - International Conference on Pattern Recognition. pp. 723–726 (2006)
Yang, J., Li, X., Xu, J., Cao, Y., Zhang, Y., Wang, L., Jiang, S.: Development of an optical defect inspection algorithm based on an active contour model for large steel roller surfaces. Appl. Opt. 57, 2490 (2018). https://doi.org/10.1364/ao.57.002490
Yan, H., Paynabar, K., Shi, J.: Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics 59, 102–114 (2017). https://doi.org/10.1080/00401706.2015.1102764
Hanbay, K., Golgiyaz, S., Talu, M.F.: Real time fabric defect detection system on Matlab and C++/Opencv platforms. In: 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). pp. 1–8. IEEE, Malatya (2017)
Lv, X., Duan, F., Jiang, J.J., Fu, X., Gan, L.: Deep metallic surface defect detection: the new benchmark and detection network. Sensors (Switzerland). (2020). https://doi.org/10.3390/s20061562
Ari, A., Hanbay, D.: Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 26, 2275–2286 (2018). https://doi.org/10.3906/elk-1801-8
Dai, W., Erdt, M., Sourin, A.: Self-supervised pairing image clustering for automated quality control. Vis. Comput. 1, 1–14 (2021). https://doi.org/10.1007/s00371-021-02137-y
Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., Riess, C.: Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 185, 455–468 (2018). https://doi.org/10.1016/j.solener.2019.02.067
Masci, J., Meier, U., Fricout, G., Schmidhuber, J.: Multi-scale pyramidal pooling network for generic steel defect classification. In: Proceedings of the International Joint Conference on Neural Networks (2013)
Natarajan, V., Hung, T.Y., Vaikundam, S., Chia, L.T.: Convolutional networks for voting-based anomaly classification in metal surface inspection. In: Proceedings of the IEEE International Conference on Industrial Technology. pp. 986–991. Institute of Electrical and Electronics Engineers Inc. (2017)
Shanmugamani, R., Sadique, M., Ramamoorthy, B.: Detection and classification of surface defects of gun barrels using computer vision and machine learning. Measurement 60, 222–230 (2015). https://doi.org/10.1016/J.MEASUREMENT.2014.10.009
Park, J.K., Kwon, B.K., Park, J.H., Kang, D.J.: Machine learning-based imaging system for surface defect inspection. Int. J. Precis. Eng. Manuf.- Green Technol. 3, 303–310 (2016). https://doi.org/10.1007/s40684-016-0039-x
Cheon, S., Lee, H., Kim, C.O., Lee, S.H.: Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Trans. Semicond. Manuf. 32, 163–170 (2019). https://doi.org/10.1109/TSM.2019.2902657
Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G.: Steel defect classification with Max-Pooling Convolutional Neural Networks. In: Proceedings of the International Joint Conference on Neural Networks (2012)
Chen, P.H., Ho, S.S.: Is overfeat useful for image-based surface defect classification tasks? In: Proceedings - International Conference on Image Processing, ICIP. pp. 749–753. IEEE Computer Society (2016)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings. (2013)
Lin, H., Li, B., Wang, X., Shu, Y., Niu, S.: Automated defect inspection of LED chip using deep convolutional neural network. J. Intell. Manuf. 30, 2525–2534 (2019). https://doi.org/10.1007/s10845-018-1415-x
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single shot MultiBox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9905 LNCS, 21–37 (2015). https://doi.org/10.1007/978-3-319-46448-0_2
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-December, 779–788 (2015)
Mujeeb, A., Dai, W., Erdt, M., Sourin, A.: Unsupervised surface defect detection using deep autoencoders and data augmentation. In: Proceedings - 2018 International Conference on Cyberworlds, CW 2018. pp. 391–398. Institute of Electrical and Electronics Engineers Inc. (2018)
Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface defects based on improved YOLO detection network. IFAC-PapersOnLine. 51, 76–81 (2018). https://doi.org/10.1016/j.ifacol.2018.09.412
Li, Y., Huang, H., Xie, Q., Yao, L., Chen, Q.: Research on a surface defect detection algorithm based on mobileNet-SSD. Appl. Sci. 8, 1678 (2018). https://doi.org/10.3390/app8091678
Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. Manuf. Technol. 65, 417–420 (2016). https://doi.org/10.1016/j.cirp.2016.04.072
Xu, Y., Li, D., Xie, Q., Wu, Q., Wang, J.: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN. Measurement 178, 109316 (2021). https://doi.org/10.1016/J.MEASUREMENT.2021.109316
Katsamenis, I., Protopapadakis, E., Doulamis, A., Doulamis, N., Voulodimos, A.: Pixel-level corrosion detection on metal constructions by fusion of deep learning semantic and contour segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 12509 LNCS, 160–169 (2020)
Aslam, Y., Santhi, N., Ramasamy, N., Ramar, K.: Localization and segmentation of metal cracks using deep learning. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01803-8
Chen, H., Hu, Q., Zhai, B., Chen, H., Liu, K.: A robust weakly supervised learning of deep Conv-Nets for surface defect inspection. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04819-5
Uzen, H., Yeroglu, C., Hanbay, D.: Development of CNN architecture for Honey Bees disease condition. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). pp. 1–5. IEEE, Malatya, Turkey (2019)
Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 358–359 (2020)
Huynh, L.D., Boutry, N.: A U-Net++ with pre-trained efficientnet backbone for segmentation of diseases and artifacts in endoscopy images and videos. CEUR Workshop Proc. 2595, 13–17 (2020)
Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J.: A public fabric database for defect detection methods and results. Autex Res. J. (2019). https://doi.org/10.2478/aut-2019-0035
Wieler, M., Hahn, T.: Weakly Supervised Learning for Industrial Optical Inspection | Heidelberg Collaboratory for Image Processing (HCI), https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing, VCIP 2017. 2018-January, 1–4 (2018). https://doi.org/10.1109/VCIP.2017.8305148
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-January, 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660
Shi, J., Dang, J., Cui, M., Zuo, R., Shimizu, K., Tsunoda, A., Suzuki, Y.: Improvement of damage segmentation based on pixel-level data balance using VGG-Unet. Appl Sci 11, 518 (2021). https://doi.org/10.3390/APP11020518
Oktay, O., Schlemper, J., Folgoc, L. le, Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B., Rueckert, D.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999v3 (2018)
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv preprint arXiv:2102.04306v1 (2021)
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. arXiv preprint arXiv:2105.05537 (2021)
Yakubovskiy, P.: Segmentation models. https://github.com/qubvel/segmentation_models
Liu, J., Song, K., Feng, M., Yan, Y., Tu, Z., Zhu, L.: Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection. Opt. Lasers Eng. 136, 106324 (2021). https://doi.org/10.1016/j.optlaseng.2020.106324
Zhou, Q., Mei, J., Zhang, Q., Wang, S., Chen, G.: Semi-supervised fabric defect detection based on image reconstruction and density estimation. Text. Res. J. 91, 962–972 (2021). https://doi.org/10.1177/0040517520966733
Yuxiang, W., Shiyi, M., Xiang, X., Shanshan, H.: DCSNet: a surface defect classification and segmentation model by one-class learning. J. Phys: Conf. Ser. 1914, 012037 (2021). https://doi.org/10.1088/1742-6596/1914/1/012037
Yuxin Li, V., Ostertag, B.J., Ross, A.E., Li, J., Wang, X., Cui, H., Rong-qiang, L., Ming-hui, L., Jia-chen, S., Yi-bin, L.: Fabric defect detection method based on improved U-Net. J. Phys. Conf. Ser. 1948, 012160 (2021). https://doi.org/10.1088/1742-6596/1948/1/012160
Seçkin, A.Ç., Seçkin, M.: Detection of fabric defects with intertwined frame vector feature extraction. Alex. Eng. J. 61, 2887–2898 (2022). https://doi.org/10.1016/J.AEJ.2021.08.017
Funding
This work was supported by the Inonu University Scientific Research Projects Coordination [Grant Number FDK-2021–2725].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Source code
The Python code for our proposed method is available on the link: https://github.com/hn42/DSEB-EUnet.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Üzen, H., Turkoglu, M., Aslan, M. et al. Depth-wise Squeeze and Excitation Block-based Efficient-Unet model for surface defect detection. Vis Comput 39, 1745–1764 (2023). https://doi.org/10.1007/s00371-022-02442-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02442-0