Skip to main content
Log in

Using optimized gaussian mixture model rules and global tracking graph for feature extraction and tracking in time-varying data

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Advances in computational power and numerical simulations have made many complex scientific simulations possible, generating large-scale and complex time-varying data. How we effectively extract and track the features contained in time-varying data play a crucial role in helping scientists recognize and understand the trendsD and dynamic behaviors behind these simulations. Many feature extraction and tracking methods often require the user to initially feed numerous feature data, e.g., a volume into their models for feature extraction, and then track the feature locally by comparing the features at two consecutive time steps. In this paper, we propose a different method to achieve feature extraction and tracking. For feature extraction, our method simply requires the user to label a feature on two slices in the time-varying data, and then, it generates a set of optimized Gaussian mixture model rules that can be used to automatically extract the feature at each time step in the time-varying data. Based on the extracted feature at each time step, our tracking method can create a global tracking graph that will record all possible tracking information of this feature across all time steps and thus achieve a global feature tracking. To demonstrate the effectiveness of our method, we applied several time-varying datasets from scientific simulations to it. Furthermore, to validate our method, we both qualitatively and quantitatively compared its feature tracking results against the ones from two state-of-the-art feature tracking techniques by referring to the ground truth. The experiment results showed that our method could generate the most accurate feature tracking results than the two compared state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22:
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bai, Z.H., Tao, Y.B., Lin, H.: Time-varying volume visualization: a survey. J. Vis. 23, 745–761 (2020)

    Article  Google Scholar 

  2. Saikia, H., Weinkauf, T.: Global feature fracking and similarity estimation in time-dependent scalar fields. Comput. Graph. Forum 26(3), 1–11 (2017)

    Article  Google Scholar 

  3. Wang, Y.H., Chen, W., Zhang, J., Dong, T.X., Shan, G.H., Chi, X.B.: Efficient volume exploration using the gaussian mixture model. IEEE Trans. Vis. Comput. Graph. 17(11), 1560–1573 (2011)

    Article  Google Scholar 

  4. Liu, S., Levine, J., Bremer, P., Pascucci, V.: Gaussian mixture model based volume visualization. In: IEEE Symposium on Large-Scale Data Analysis and Visualization, pp. 73–77 (2012)

  5. Obermaier, H., Joy, K.I.: Local data models for probabilistic transfer function design. In: EuroVis, pp. 43–47 (2013)

  6. Shen, E., Xia, J.Z., Cheng, Z.Q., Martin, R.R., Wang, Y.H., Li, S.K.: Model-driven multicomponent volume exploration. Vis. Comput. 31, 441–454 (2015)

    Article  Google Scholar 

  7. Dutta, S., Shen, H.W.: Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans. Vis. Comput. Graph. 22(1), 837–846 (2015)

    Article  Google Scholar 

  8. Bao, X.K., Wang, Y.H., Cheng, Z.L., Tu, C.H., Zhou, F.F., Chen, B.Q.: Analogy-based volume exploration using ellipsoidal gaussian transfer functions. J. Vis. 21, 511–523 (2018)

    Article  Google Scholar 

  9. Zhang, H.J., Qu, D.Z., Liu, Q.L., Shang, Q., Hou, Y.F., Shen, H.W.: Uncertainty visualization for variable associations analysis. Vis. Comput. 34, 531–549 (2018)

    Article  Google Scholar 

  10. Ma, J., Chen, J.J., Chen, L.Y., Zhou, X.J., Qin, X.J., Tang, Y., Sun, G.D., Chen, J.Z.: Gaussian mixture model-based target feature extraction and visualization. J. Vis. (2021). https://doi.org/10.1007/s12650-020-00724-0

    Article  Google Scholar 

  11. Samtaney, R., Sliver, J., Zabusky, N.J., Cao, J.: Visualizing features and tracking their evolution. Computer 27(7), 20–27 (1994)

    Article  Google Scholar 

  12. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput. Graph. 3(2), 129–141 (1997)

    Article  Google Scholar 

  13. Bremer, P.T., Weber, G., Tierny, J., Pascucci, V., Day, M., Bell, J.: Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis. Comput. Graph. 17(9), 1307–1324 (2011)

    Article  Google Scholar 

  14. Widanagamaachchi, W., Chen, J., Klacansky, P., Pascucci, V., Kolla, H., Bhagatwala, A., Bremer, P.T.: Tracking features in embedded surfaces: understanding extinction in turbulent combustion. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 9–16 (2015)

  15. Widanagamaachchi, W., Jacques, A., Wang, B., Crosman, E., Bremer, P.T., Pascucci, V., Horel, J.: Exploring the evolution of pressure-perturbations to understand atmospheric phenomena. In: PacificVis, pp. 101–110 (2017)

  16. Takle, J., Silver, D., Heitmann, K.: A case study: tracking and visualizing the evolution of dark matter halos and groups of satellite halos in cosmology simulations. In: IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 243–244 (2012)

  17. Krone, M., Reina, G., Schulz, C., Kulschewski, T., Pleiss, J., Ertl, T.: Interactive extraction and tracking of biomolecular surface features. Comput. Graph. Forum 32, 331–340 (2013)

    Article  Google Scholar 

  18. Reinders, F., Post, F.H., Spoelder, H.J.W.: Visualization of time-dependent data with feature tracking and event detection. Vis. Comput. 17, 55–71 (2001)

    Article  MATH  Google Scholar 

  19. Salzbrunn, T., Garth, C., Scheuermann, G., Meyer, J.: Pathline predicates and unsteady flow structures. Vis. Comput. 24, 1039–1051 (2008)

    Article  Google Scholar 

  20. Ozer, S., Silver, D., Bemis, K., Martin, P.: Activity detection in scientific visualization. IEEE Trans. Vis. Comput. Graph. 20(3), 377–390 (2014)

    Article  Google Scholar 

  21. Kumpf, A., Rautenhaus, M., Riemer, M., Westermann, R.: Visual analysis of the temporal evolution of ensemble forecast sensitivities. IEEE Trans. Vis. Comput. Graph. 25(1), 98–108 (2019)

    Article  Google Scholar 

  22. Valsangkar, A.A., Monteiro, J.M., Narayanan, V., Hotz, I., Natarajan, V.: An exploratory framework for cyclone identification and tracking. IEEE Trans. Vis. Comput. Graph. 25(3), 1460–1473 (2019)

    Article  Google Scholar 

  23. Widanagamaachchi, W., Christensen, C., Bremer, P.T., Pascucci, V.: Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 9–17 (2012)

  24. Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G.: Computing and visualizing time-varying merge trees for high-dimensional data. In: Topological Methods in Data Analysis and Visualization, pp. 87–101 (2015)

  25. Sauer, F., Yu, H.F., Ma, K.L.: Trajectory-based flow feature tracking in joint particle/volume datasets. IEEE Trans. Vis. Comput. Graph. 20(12), 2565–2574 (2014)

    Article  Google Scholar 

  26. Wolfgang, B.: Applied Medical Image Processing: A Basic Course, 2nd edn. CRC Press (2014)

  27. Sahner, J., Weinkauf, T., Teuber, N., Hege, H.C.: Vortex and strain skeletons in eulerian and lagrangian frames. IEEE Trans. Vis. Comput. Graph. 13(5), 980–990 (2007)

    Article  Google Scholar 

  28. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2000)

    Book  MATH  Google Scholar 

  29. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Crawfis, R., Max, N.: Texture splats for 3d scalar and vector field visualization. In: Visualization, pp. 261–266 (1993)

  31. Camarri, S., Salvetti, M.V., Buffoni, M., Iollo, A.: Simulation of the three-dimensional flow around a square cylinder between parallel walls at moderate {Reynolds} numbers. In: XVII Congresso di Meccanica Teorica ed Applicata (2005)

  32. International CFD Database. http://cfd.cineca.it/

  33. von Funck, W., Weinkauf, T., Theisel, H., Seidel, H.P.: Smoke surfaces: an interactive flow visualization technique inspired by real-world flow experiments. IEEE Trans. Vis. Comput. Graph. 14(6), 1396–1403 (2008)

    Article  Google Scholar 

  34. 3D Slicer. https://www.slicer.org/

  35. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F.M., Sonka, M., Buatti, J., Aylward, S.R., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imag. 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  36. Viscous Fingers. https://www.uni-kl.de/sciviscontest/#data

  37. Aldrich, G., Lukasczyk, J., Steptoe, M., Maciejewski, R., Leitte, H., Hamann, B.: Viscous fingers: A topological visual analytic approach. In: Geveci, B., Garth, C. (eds.) Scientific Visualization Contest 2016 submission (also presented as a poster), IEEE Visualization 2016—Scientific Visualization Contest, IEEE Xplore Digital Library. IEEE Press (2016)

    Google Scholar 

  38. Bouchachia, A., Vanaret, C.: Incremental learning based on growing Gaussian mixture models. In: Proc. of 10th International Conference on Machine Learning and Applications and Workshops (2011)

Download references

Acknowledgments

We would like to thank Dr. Gareth Young from the School of Computer Science and Statistics in Trinity College Dublin (TCD) for his great help in improving the English of this paper. We also would like to thank the anonymous reviewers for their valuable comments.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 61902350, and by the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University under Grant No. A2111.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Ma or Jinjin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Chen, J. & Yang, C. Using optimized gaussian mixture model rules and global tracking graph for feature extraction and tracking in time-varying data. Vis Comput 39, 1869–1892 (2023). https://doi.org/10.1007/s00371-022-02451-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02451-z

Keywords

Navigation