Skip to main content
Log in

A survey of image encryption algorithms based on chaotic system

  • Survey
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Many researchers have devoted themselves to studying image encryption based on chaotic system and have made significant strides in research in recent decades. This paper first combs and summarizes the development of the current image encryption algorithm. Then, the classification of chaotic system is described, and representative work and the latest achievements regarding image encryption algorithms based on chaotic system are analysed, expounding their advantages and disadvantages. Finally, we discuss future research directions and development trends in image encryption algorithms based on chaotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wu, Y.H., Dai, X.Q.: Encryption of accounting data using DES algorithm in computing environment. J. Intell. Fuzzy Syst 39(4), 5085–5095 (2020). https://doi.org/10.3233/JIFS-179994

    Article  Google Scholar 

  2. Yang, C.H., Chien, Y.S.: FPGA implementation and design of a hybrid chaos-AES color image encryption algorithm. Symmetry-Basel (2020). https://doi.org/10.3390/sym12020189

    Article  Google Scholar 

  3. Watt, S.D., Sidhu, H.S., Mcintosh, A.C., Brindley, J.: Chaotic flow in competitive exothermic-endothermic reaction systems. Appl. Math. Lett. (2021). https://doi.org/10.1016/j.aml.2020.106960

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghosh, D., Singh, J.: Spectrum-based multi-fault localization using Chaotic Genetic Algorithm. Inf. Softw. Technol. (2021). https://doi.org/10.1016/j.infsof.2021.106512

    Article  Google Scholar 

  5. Feng, C.F., Yang, H.J., Zhou, C.: Difference synchronization in nonidentical discrete-time chaotic systems with different dimensions using three scaling matrices. Phys. Scr. (2021). https://doi.org/10.1088/1402-4896/abe4f1

    Article  Google Scholar 

  6. Ahmad, L.: A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2020.125858

    Article  MathSciNet  MATH  Google Scholar 

  7. Paknejad, P., Khorsand, R., Ramezanpour, M.: Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment. Futur. Gener. Comput. Syst. 117, 12–28 (2021). https://doi.org/10.1016/j.future.2020.11.002

    Article  Google Scholar 

  8. Qi, G.Y., Xu, L., Yang, X.G.: Energy mechanism analysis for chaotic dynamics of gyrostat system and simulation of displacement orbit using comsol. Appl. Math. Model. 92, 333–348 (2021). https://doi.org/10.1016/j.apm.2020.11.015

    Article  MathSciNet  MATH  Google Scholar 

  9. Conejero, J.A., Martinez-Gimenez, F., Peris, A., Rodenas, F.: Sets of periods for chaotic linear operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. (2021). https://doi.org/10.1007/s13398-020-00996-z

    Article  MATH  Google Scholar 

  10. Bento, P.H.S., Novaes, M.: Semiclassical treatment of quantum chaotic transport with a tunnel barrier. J. Phys. A-Math. Theor. (2020). https://doi.org/10.1088/1751-8121/abcf58

    Article  MATH  Google Scholar 

  11. Zhao, D., Liu, L., Yu, F.H., Heidari, A.A., Wang, M.J., Liang, G.X., Chen, K.H.L.: Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl.-Based Syst. (2021). https://doi.org/10.1016/j.knosys.2020.106510

    Article  Google Scholar 

  12. Zheng, J., Hu, H.P.: A symmetric image encryption scheme based on hybrid analog-digital chaotic system and parameter selection mechanism. Multimed. Tools Appl. 2021(1), 1–23 (2021). https://doi.org/10.1007/s11042-021-10751-0

    Article  MathSciNet  Google Scholar 

  13. Debelee, T.G., Schwenker, F., Ibenthal, A., Yohannes, D.: Survey of deep learning in breast cancer image analysis. Evol. Syst. 11(1), 143–163 (2020). https://doi.org/10.1007/s12530-019-09297-2

    Article  Google Scholar 

  14. Debelee, T.G., Kebede, S.R., Schwenker, F., Shewarega, Z.M.: Deep Learning in selected cancers’image analysis—a survey. J Imaging 6(11), 121 (2020). https://doi.org/10.3390/jimaging6110121

    Article  Google Scholar 

  15. Biratu, E.S., Schwenker, F., Ayano, Y.M., Debelee, T.G.: A survey of brain tumor segmentation and classification algorithms. J. Imaging 7(9), 179 (2021). https://doi.org/10.3390/jimaging7090179

    Article  Google Scholar 

  16. Talhaoui, M.Z., Wang, X.Y., Talhaoui, A.: A new one-dimensional chaotic map and its application in a novel permutation-less image encryption scheme.Visual Comput. 37(7): 1757–1768 (2020). doi: https://doi.org/10.1007/s00371-020-01936-z.

  17. Xu, J., Mou, J., Liu, J., Hao, J.: The image compression–encryption algorithm based on the compression sensing and fractional-order chaotic system. Visual Comput (2021). https://doi.org/10.1007/s00371-021-02085-7

    Article  Google Scholar 

  18. Talhaoui, M.Z., Wang, X.Y., Midoun, M.A.: A new one-dimensional cosine polynomial chaotic map and its use in image encryption. Visual Comput. 37(3), 541–551 (2020). https://doi.org/10.1007/s00371-020-01822-8

    Article  Google Scholar 

  19. Wang, X.Y., Su, Y.N., Liu, L., Zhang, H., Di, S.H.: Color image encryption algorithm based on Fisher-Yates scrambling and DNA subsequence operation. Visual Comput. (2021). https://doi.org/10.1007/s00371-021-02311-2

    Article  Google Scholar 

  20. Mansouri, A., Wang, X.Y.: Image encryption using shuffled Arnold map and multiple values manipulations. Visual Comput. 37(6), 189–200 (2021). https://doi.org/10.1007/s00371-020-01791-y

    Article  Google Scholar 

  21. Hosny, M.K., Kamal, S.T., Darwlsh, M.M.: A novel color image encryption based on fractional shifted gegenbauer moments and 2D logistic-sinemap. Visual Comput. (2021). https://doi.org/10.1007/s00371-021-02382-1

    Article  Google Scholar 

  22. Wu, J.J., Liu, Z.J., Wang, J.C., Hu, L.F., Liu, S.T.: A compact image encryption system based on Arnold transformation. Multimed. Tools Appl. 80(2), 1–15 (2020). https://doi.org/10.1007/s11042-020-09828-z

    Article  Google Scholar 

  23. Aparna, H., Bhumijaa, B., Santhiyadevi, R., Vaishanavi, K., Sathanarayanan, M., Rengarajan, A., Praveenkumar, P., Abd El-Latif, A.: Double layered Fridrich structure to conserve medical data privacy using quantum cryptosystem. J. Inf. Secur. Appl. (2021). https://doi.org/10.1016/j.jisa.2021.102972

    Article  Google Scholar 

  24. Jiang, D.H., Liu, L.D., Zhu, L.Y., Wang, X.Y., Rong, X.W., Chai, H.Y.: Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Process. (2021). https://doi.org/10.1016/j.sigpro.2021.108220

    Article  Google Scholar 

  25. Muthu, J.S., Murali, P.: A novel DICOM image encryption with JSMP map. Optik (2022). https://doi.org/10.1016/j.ijleo.2021.168416

    Article  Google Scholar 

  26. Mondal, B., Singh, J.P.: A lightweight image encryption scheme based on chaos and diffusion circuit. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-021-11657-7

    Article  Google Scholar 

  27. Shahna, K.U., Mohamed, A.: Novel hyper chaotic color image encryption based on pixel and bit level scrambling with diffusion. Signal Process.-Image Commun. (2021). doi: https://doi.org/10.1016/j.image.2021.116495.

  28. Hosny, K.M., Kamal, S.T., Darwish, M.M.: Novel encryption for color images using fractional-order hyperchaotic system.J. Ambient Intell. Humaniz. Comput. (2022). doi: https://doi.org/10.1007/s12652-021-03675-y.

  29. Lu, Q., Yu, L.L., Zhu, C.X.: A New conservative hyperchaotic system-based image symmetric encryption scheme with DNA coding. SYMMETRY-BASEL. (2021). https://doi.org/10.3390/sym13122317

    Article  Google Scholar 

  30. Khan, M., Jamal, S.S., Hazzazi, M.M., Ali, K.M., Hussain, I., Asif, M.: An efficient image encryption scheme based on double affine substitution box and chaotic system. Integration-VLSI J. 81, 108–122 (2021). https://doi.org/10.1016/j.vlsi.2021.05.007

    Article  Google Scholar 

  31. Dong, W.L., Li, Q.L., Tang, Y.W.: Image encryption-then-transmission combining random sub-block scrambling and loop DNA algorithm in an optical chaotic system. Chaos Solitons Fractals. (2021). https://doi.org/10.1016/j.chaos.2021.111539

    Article  MathSciNet  Google Scholar 

  32. Man, Z.L., Li, J.Q., Di, X.Q., Sheng, Y.H., Liu, Z.F.: Double image encryption algorithm based on neural network and chaos.Chaos Solitons Fractals. (2021). doi: https://doi.org/10.1016/j.chaos.2021.111318.

  33. Wang, X.Y., Liu, C., Jiang, D.H.: A novel triple-image encryption and hiding algorithm based on chaos, compressive sensing and 3D DCT. Inf. Sci. 574, 505–527 (2021). https://doi.org/10.1016/j.ins.2021.06.032

    Article  MathSciNet  Google Scholar 

  34. Preishuber, M., Hutter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and empirical eecurity analysis of chaos-based image and video encryption. IEEE Trans. Inf. Forensic Secur. 13(9), 2137–2150 (2018). https://doi.org/10.1109/TIFS.2018.2812080

    Article  Google Scholar 

  35. Yildirim, M.: DNA Encoding for RGB Image Encryption with Memristor Based Neuron Model and Chaos Phenomenon. Microelectron. J.104: 104878(2020). doi: https://doi.org/10.1016/j.mejo.2020.104878.

  36. Veena, G., Ramakrishna, M.: A survey on image encryption using chaos-based techniques. Int. J. Adv. Comput. Sci. Appl. 12(1), 379–384 (2021). https://doi.org/10.14569/IJACSA.2021.0120145

    Article  Google Scholar 

  37. Shao, Z.H., Tang, Y.D., Liang, M.X., Shang, Y.Y., Wang, F., Wang, Y.F.: Double image encryption based on symmetry of 2D-DFT and equal modulus decomposition. Multimed. Tools Appl. 80(6), 8973–8998 (2021). https://doi.org/10.1007/s11042-020-09961-9

    Article  Google Scholar 

  38. Faragallah, O.S., El-Sayed, H.S., Afifi, A., Shafai, W.E.I.: Efficient and secure opto-cryptosystem for color images using 2D Logistic-based fractional fourier transform. Opt. Lasers Eng.137(2021). doi: https://doi.org/10.1016/j.optlaseng.2020.106333.

  39. Daoui, A., Yamni, M., Karmouni, H., Sayyouri, M., Qjidaa, H.: Biomedical signals reconstruction and zero-watermarking using separable fractional order charlier–krawtchouk transformation and sine cosine algorithm. Signal Process. (2021). https://doi.org/10.1016/j.sigpro.2020.107854

    Article  MATH  Google Scholar 

  40. Sun, L.M., Liang, S.L., Chen, P.P., Chen, Y.X.: Encrypted digital watermarking algorithm for quick response code using discrete cosine transform and singular value decomposition. Multimed. Tools Appl. 89(7), 10285–10300 (2021). https://doi.org/10.1007/s11042-020-10075-5

    Article  Google Scholar 

  41. Nawaz, S.A., Li, J.B., Bhatti, U.A., Mehmood, A., Shoukat, M.U., Bhatti, M.A.: Advance hybrid medical watermarking algorithm using speeded up robust features and discrete cosine transform. PLoS ONE (2020). https://doi.org/10.1371/journal.pone.0232902

    Article  Google Scholar 

  42. Lima, V.S., Madeiro, F., Lima, J.B.: Encryption of 3D medical images based on a novel multiparameter cosine number transform. Comput. Biol. Med. (2020). https://doi.org/10.1016/j.compbiomed.2020.103772

    Article  Google Scholar 

  43. Wang, X.Y., Gao, S., Ye, X.L., Zhou, S., Wang, M.X.: A new image encryption algorithm with cantor diagonal scrambling based on the pumcml system. Int. J. Bifurcation Chaos(2021). doi: https://doi.org/10.1142/S0218127421500036.

  44. Sivaraman, R., Sundararaman, S., Rayappan, J.B.B., Amirtharajan, R.: Ring oscillator as confusion-diffusion agent: A complete trng drove image security. IET Image Process 14(13), 2987–2997 (2020). https://doi.org/10.1049/iet-ipr.2019.0168

    Article  Google Scholar 

  45. Kumari, M., Gupta, S., Malik, A.: A superlative image encryption technique based on bit plane using key-based electronic code book. Multimed. Tools Appl. 79(43–44), 33161–33191 (2020). https://doi.org/10.1007/s11042-020-09627-6

    Article  Google Scholar 

  46. Javeed.A., Shah, T.R., Attaullah.: Light weight secure image encryption scheme based on chaotic differential equation. Chin. J. Phys 66: 645–659 (2020). doi: https://doi.org/10.1016/j.cjph.2020.04.008.

  47. Liang, X.K., Tan, X., Tao, L.M., Hu, B.: Image hybrid encryption based on matrix nonlinear operation and generalized arnold transformation. Int. J. Pattern Recognit. Artif. Intell. (2018). https://doi.org/10.1142/S0218001419540223

    Article  Google Scholar 

  48. Cai, X.S., Liu, C.X., Wang, Y.Y., Zhang, H.: A novel 4D chaotic system with nonhyperbolic hyperbolic shape equilibrium points: analysis, circuit implementation and color image encryption. Int. J. Mod. Phys. B. (2019). https://doi.org/10.1142/S0217979219503831

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, H., Zhao, B., Huang, L.Q.: Quantum image encryption scheme using arnold transform and s-box scrambling. Entropy (2019). https://doi.org/10.3390/e21040343

    Article  MathSciNet  Google Scholar 

  50. Naik, K., Pal, A.K., Agarwal, R.: Selective image encryption using singular value decomposition and arnold transform. Int. Arab J. Inf. Technol. 15(4), 739–747 (2018)

    Google Scholar 

  51. Cai, T., Kim, D., Song, X.Y., Wang, Y.Z.: Optimal Sparse Eigenspace and Low-Rank Density Matrix Estimation for Quantum Systems. J. Stat. Plan. Infer. 213, 50–71 (2021). https://doi.org/10.1016/j.jspi.2020.11.002

    Article  MathSciNet  MATH  Google Scholar 

  52. Yuan, S.Z., Mao, X., Xue, Y.L., Chen, L.J., Xiong, Q.X., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014). https://doi.org/10.1007/s11128-014-0733-y

    Article  MathSciNet  MATH  Google Scholar 

  53. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z

    Article  MathSciNet  Google Scholar 

  54. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011). https://doi.org/10.1007/s11128-010-0177-y

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhou, R.G., Li, Y.B.: Quantum image encryption based on Lorenz hyper-chaotic system. Int. J. Quantum Inf. (2020). https://doi.org/10.1142/S0219749920500227

    Article  MathSciNet  MATH  Google Scholar 

  56. Ye, G.D., Jiao, K.X., Huang, L.X., Goi, B.M., Yap, W.S.: An image encryption scheme based on public key cryptosystem and quantum logistic system. Sci Rep (2020). https://doi.org/10.1038/s41598-020-78127-2

    Article  Google Scholar 

  57. Rajasekaran, S., Rajwade, A.: Analyzing cross-validation in compressed sensing with poisson noise.Signal Process. (2020). doi: https://doi.org/10.1016/j.sigpro.2020.107947.

  58. Tong, F.H., Li, L.X., Peng, H.P., Yang, Y.X.: Flexible construction of compressed sensing matrices with low storage space and low coherence. Signal Process. (2020). https://doi.org/10.1016/j.sigpro.2020.107951

    Article  Google Scholar 

  59. Yu, J.L., Chao, L., Song, X.M., Guo, S.Y., Wang, E.F.: Parallel mixed image encryption and extraction algorithm based on compressed sensing. Entropy (2014). https://doi.org/10.3390/e23030278

    Article  Google Scholar 

  60. Tang, Y.L., Zhao, M.J., Li, L.X.: Secure and efficient image compression-encryption scheme using new chaotic structure and compressive sensing. Secur. Commun. Netw 2020(2), 1–15 (2020). https://doi.org/10.1155/2020/6665702

    Article  Google Scholar 

  61. Ma, C.G., Mou, J., Xiong, L., Banerjee, S., Liu, T.M., Han, X.T.: Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-021-06276-8

    Article  Google Scholar 

  62. Zang, H.Y., Liu, J.Y., Li, J.: Construction of a class of high-dimensional discrete chaotic system. Mathematics. (2021). https://doi.org/10.3390/math9040365

    Article  Google Scholar 

  63. Shahna, K.U., Mohamed, A.: A novel image encryption scheme using both pixel level and bit level permutation with chaotic system. Appl. Soft. Comput .90(2020). doi: https://doi.org/10.1016/j.asoc.2020.106162.

  64. Wang, X.Y., Lin, S.J., Li, Y.: Bit-level image encryption algorithm based on BP neural network and gray code. Multimed. Tools Appl (2021). https://doi.org/10.1007/s11042-020-10202-2

    Article  Google Scholar 

  65. Hui, Y.Y., Liu, H., Fang, P.F.: A DNA image encryption based on a new hyperchaotic system. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-021-10526-7

    Article  Google Scholar 

  66. Shafique, A., med, F.F.: Image Encryption Using Dynamic S-Box Substitution in the Wavelet Domain. Wirel. Pers. Commun. 115(3): 2243–2268 (2020). doi: https://doi.org/10.1007/s11277-020-07680-w.

  67. Mansouri, A., Wang, X.Y.: A novel block-based image encryption scheme using a new Sine powered chaotic system generator. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-021-10757-8

    Article  Google Scholar 

  68. Xian, Y.J., Wang, X.Y.: Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 547, 1154–1169 (2021). https://doi.org/10.1016/j.ins.2020.09.055

    Article  MathSciNet  MATH  Google Scholar 

  69. Elmanfaloty, R.A., Abou-Bakr, E.: An Image Encryption Scheme Using a 1D Chaotic Double Section Skew Tent System. Complexity (2020). https://doi.org/10.1155/2020/7647421

    Article  Google Scholar 

  70. Huang, H.Q., Yang, S.H., Ye, R.S.: Efficient symmetric image encryption by using a novel 2D chaotic system. IET Image Process. 14(6), 1157–1163 (2020). https://doi.org/10.1049/iet-ipr.2019.0551

    Article  Google Scholar 

  71. Midoun, M.A., Wang, X.Y., Talhaoui, M.Z.: A sensitive dynamic mutual encryption system based on a new 1D chaotic system. Opt. Lasers Eng. (2021). https://doi.org/10.1016/j.optlaseng.2020.106485

    Article  Google Scholar 

  72. Chowdhury, S.N., Ghosh, D.: Hidden attractors: A new chaotic system without equilibria. Eur. Phys. J.-Spec. Top. 229(6–7), 1299–1308 (2020). https://doi.org/10.1140/epjst/e2020-900166-7

    Article  Google Scholar 

  73. Anwar, M.S., Sar, G.K., Ray, A., Ghosh, D.: Behavioral study of a new chaotic system. Eur. Phys. J.-Spec. Top. 229(6–7), 1343–1350 (2020). https://doi.org/10.1140/epjst/e2020-900250-6

    Article  Google Scholar 

  74. Xiao, Y., Sun, K.H., He, S.B.: Dynamics of a hyperchaotic system with spherical attractor. Phys. Scr. (2020). https://doi.org/10.1088/1402-4896/ab842e

    Article  Google Scholar 

  75. Wang, S.C., Wang, C.H., Xu, C.: An image encryption algorithm based on a hidden attractor chaos system and the Knuth-Durstenfeld algorithm. Opt. Lasers Eng. (2019). https://doi.org/10.1016/j.optlaseng.2019.105995

    Article  Google Scholar 

  76. Arpac, B., Kurt, E., Celik, K., Ciylan, B.: Colored Image Encryption and Decryption with a New Algorithm and a Hyperchaotic Electrical Circuit. J. Electr. Eng. Technol. 15(3), 1413–1429 (2020). https://doi.org/10.1007/s42835-020-00393-x

    Article  Google Scholar 

  77. Dong, E.Z., Yuan, M.F., Zhang, C., Tong, J.G., Chen, Z.Q., Du, S.Z.: Topological horseshoe analysis, ultimate boundary estimations of a new 4D hyperchaotic system and its FPGA implementation. Int. J. Bifurcation Chaos. (2018). https://doi.org/10.1142/S0218127418500815

    Article  MATH  Google Scholar 

  78. Chen, L, J., Tang, S., Li, Q.D., Zhong, S.M.: A new 4D hyperchaotic system with high complexity. Math. Comput. Simul. 146: 44–56 (2018). doi: https://doi.org/10.1016/j.matcom.2017.10.002.

  79. Feng, Y., Rajagopal, K., Khalaf, A.J.M., Alsaadi, F.E., Alsaadi, F.E., Pham, V.T.: A new hidden attractor hyperchaotic memristor oscillator with a line of equilibria. Eur. Phys. J.-Spec. Top. 229(7), 1279–1288 (2020). https://doi.org/10.1140/epjst/e2020-900097-0

    Article  Google Scholar 

  80. Ding, L.N., Ding, Q.: The establishment and dynamic properties of a new 4D hyperchaotic system with its application and statistical tests in gray images. Entropy (2020). https://doi.org/10.3390/e22030310

    Article  MathSciNet  Google Scholar 

  81. Luo, C., Liu, B.Q., Hou, H.S.: Fractional chaotic systems with q–deformation. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2020.125759

    Article  MATH  Google Scholar 

  82. Xu, J., Mou, J., Liu, J., Hao, J.: The image compression–encryption algorithm based on the compression sensing and fractional-order chaotic system. Visual Comput. (2021). https://doi.org/10.1007/s00371-021-02085-7

    Article  Google Scholar 

  83. Talhaoui, M.Z., Wang, X.Y.: A new fractional one dimensional chaotic system and its application in high-speed image encryption. Inf. Sci. 550, 13–26 (2020). https://doi.org/10.1016/j.ins.2020.10.048

    Article  MATH  Google Scholar 

  84. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic system. Commun. Nonlinear Sci. Numer. Simul 17(7), 2943–2959 (2012). https://doi.org/10.1016/j.cnsns.2011.11.030

    Article  MathSciNet  MATH  Google Scholar 

  85. Herbadji, D., Derouiche, N., Belmeguenai, A., Herbadji, A.: A tweakable image encryption algorithm using improved logistic chaotic system. Trait. Signal 26(5), 407–417 (2019). https://doi.org/10.18280/ts.360505

    Article  Google Scholar 

  86. Sneha, P.S., Sankar, S., SKumar, A.: A chaotic colour image encryption scheme combining Walsh-Hadamard transform and Arnold-Tent systems. J. Ambient Intell. Humaniz. Comput. 11(3): 1289–1308 (2020). doi: https://doi.org/10.1007/s12652-019-01385-0.

  87. Faragallah, O.S.: Optical double color image encryption scheme in the Fresnel-based Hartley domain using Arnold transform and chaotic logistic adjusted sine phase masks. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1363-x

    Article  Google Scholar 

  88. Li, T., Wang, Y., Zhang, C.: A new image encryption algorithm based on optimized Lorenz chaotic system. Concurr. Comput.-Pract. Exp. (2020). https://doi.org/10.1002/cpe.5902

    Article  Google Scholar 

  89. Hagras, E.A.A., Saber, M.: Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption. Multimed. Tools Appl. 79(31–32), 23203–23222 (2020). https://doi.org/10.1007/s11042-019-08517-w

    Article  Google Scholar 

  90. Zhao, C.F., Ren, H.P.: Image encryption based on hyper-chaotic multi-attractors. Nonlinear Dyn. 100(1), 679–698 (2020). https://doi.org/10.1007/s11071-020-05526-5

    Article  Google Scholar 

  91. Li, Z., Peng, C.G., Tan, W.T., Li, L.R.: A novel chaos-based image encryption scheme by using randomly DNA encode and plaintext related permutation. Appl. Sci.-Basel. (2020). https://doi.org/10.3390/app10217469

    Article  Google Scholar 

  92. Chen, H., Liu, Z.J., Tanougast, C., Liu, F.F., Blondel, W.: A novel chaos based optical cryptosystem for multiple images using DNA-blend and gyrator transform. Opt. Lasers Eng. (2020). https://doi.org/10.1016/j.optlaseng.2020.106448

    Article  Google Scholar 

  93. Nezhad, S.Y.D., Safdarian, N., Zadeh, S.A.H.: New method for fingerprint images encryption using DNA sequence and chaotic tent system. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165661

    Article  Google Scholar 

  94. Huang, L.L., Wang, S.M., Xiang, J.H., Sun, Y.: Chaotic color image encryption scheme using Deoxyribonucleic Acid (DNA) coding calculations and arithmetic over the galois field. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/3965281

    Article  Google Scholar 

  95. Alshammari, B.M., Guesmi, R., Guesmi, T., Alsaif, H.: Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box, ” Symmetry-Basel. (2021). doi: https://doi.org/10.3390/sym13010129.

  96. Hernandez-Diaz, E., Perez-Meana, H., Silva-Garcia, V., Flores-Carapia, R.: JPEG images encryption scheme using elliptic curves and a new S-Box generated by chaos. Electronics (2021). https://doi.org/10.3390/electronics10040413

    Article  Google Scholar 

  97. Wang, X.Y., Yang, J.J.: A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic system. Optik (2021). https://doi.org/10.1016/j.ijleo.2020.164884

    Article  Google Scholar 

  98. Mousavi, M., Sadeghiyan, B.: A new image encryption scheme with Feistel like structure using chaotic S-box and Rubik cube based P-box. Multimed. Tools Appl (2021). https://doi.org/10.1007/s11042-020-10440-4

    Article  Google Scholar 

  99. Wang, Y., Wu, F.G., Zhang, X., Zheng, Z.M., Wang, Z., Wang, W.H.: A fast color image encryption algorithm using 4-pixel feistel structure. PLoS ONE (2016). https://doi.org/10.1371/journal.pone.0165937.0

    Article  Google Scholar 

  100. Wang, Y., Zhang, X., Zheng, Z.M., Qiu, W.J.: A colour image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems. Nonlinear Dyn. 81(1–2), 151–168 (2015). https://doi.org/10.1007/s11071-015-1979-3

    Article  MathSciNet  MATH  Google Scholar 

  101. Zhao, H.X., Xie, S.C., Zhang, J.Z., Wu, T.: A dynamic block image encryption using variable-length secret key and modified Henon system. Optik (2021). https://doi.org/10.1016/j.ijleo.2021.166307

    Article  Google Scholar 

  102. Gong, L.H., Du, J., Wan, J., Zhou, N.R.: Image encryption scheme based on block scrambling, closed-Loop diffusion, and DNA molecular mutation. Secur. Commun. Netw (2021). https://doi.org/10.1155/2021/6627005

    Article  Google Scholar 

  103. Girdhar, A., Kapur, H., Kumar, V.: A novel grayscale image encryption approach based on chaotic systems and image blocks. Appl. Phys. B-Lasers Opt. (2021). https://doi.org/10.1007/s00340-021-07585-x

    Article  Google Scholar 

  104. Jie, J., Hu, K., Li, G.F., Guo, Y.: CNN-based driving maneuver classification using multi-sliding window fusion. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.114442

    Article  Google Scholar 

  105. Wirthmuller, F., Klimke, M., Schlechtriemen, J., Hipp, J., Reichert, M.: Predicting the time until a vehicle changes the lane using LSTM-based recurrent neural networks. IEEE Robot. Autom. Lett. 6(2), 2357–2364 (2021). https://doi.org/10.1109/LRA.2021.3058930

    Article  Google Scholar 

  106. Zhang, Y., Chen, A.G., Tang, Y.T., Dang, J.W., Wang, G.P.: Plaintext-related image encryption algorithm based on perceptron-like network. Inf. Sci. 526, 180–202 (2020). https://doi.org/10.1016/j.ins.2020.03.054

    Article  MathSciNet  Google Scholar 

  107. Wang, X.Y., Gao, S.: Application of matrix semi-tensor product in chaotic image encryption. J. Frankl. Inst.-Eng. Appl. Math. 356(18), 11638–11667 (2019). https://doi.org/10.1016/j.jfranklin.2019.10.006

    Article  MathSciNet  MATH  Google Scholar 

  108. Wang, X.Y., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020). https://doi.org/10.1016/j.ins.2020.06.030

    Article  MathSciNet  MATH  Google Scholar 

  109. Wang, X.Y., Gao, S.: Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf. Sci. 507, 16–36 (2020). https://doi.org/10.1016/j.ins.2019.08.041

    Article  MathSciNet  MATH  Google Scholar 

  110. Duan, X.Y., Ying, S., Yuan, W.L., Cheng, H.L., Yin, X.: A Generative Adversarial Networks for Log Anomaly Detectio. Comput. Syst. Sci. Eng. 37(1), 135–148 (2021). https://doi.org/10.32604/csse.2021.014030

    Article  Google Scholar 

  111. Gan, J.Y., Jiang, K.Y., Tan, H.Y., He, G.H.: Facial beauty prediction based on lighted deep convolution neural network with feature extraction strengthened. Chin. J. Electron 29(2), 312–321 (2021). https://doi.org/10.1049/cje.2020.01.009

    Article  Google Scholar 

  112. Fang, P.F., Liu, H., Wu, C.M., Liu, M.: A Secure Chaotic Block Image Encryption Algorithm Using Generative Adversarial Networks and DNA Sequence Coding. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/6691547

    Article  MathSciNet  Google Scholar 

  113. Fang, P.F., Liu, H., Wu, C.M.: A novel chaotic block image encryption algorithm based on deep convolutional generative adversarial networks. IEEE Access. 9, 18497–18517 (2021). https://doi.org/10.1109/ACCESS.2020.3040573

    Article  Google Scholar 

  114. He, Y., Zhang, Y.Q., He, H., Wang, X.Y.: A new image encryption algorithm based onthe OF-LSTMS and chaotic sequences. Sci Rep (2021). https://doi.org/10.1038/s41598-021-85377-1

    Article  Google Scholar 

  115. Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010). https://doi.org/10.1007/s11071-010-9749-8

    Article  MathSciNet  MATH  Google Scholar 

  116. Tong, X.J.: Novel bilateral-diffusion image encryption algorithm with compound chaos and LFSR. Image science Journal. 60(5), 294–304 (2012). https://doi.org/10.1179/1743131X11Y.0000000042

    Article  Google Scholar 

  117. Wang, K.S., Wu, X.J., Wang, H., Kan, H.B., Kurths, J.: New color image cryptosystem via SHA-512 and hybrid domain. Multimed. Tools Appl (2021). https://doi.org/10.1007/s11042-021-10511-0

    Article  Google Scholar 

  118. Vidhya, R., Brindha, M., Gounden, N.A.: Analysis of zig-zag scan based modified feedbac k convolution algorithm against differential attacks and its application to image encryption. Appl. Intell. 50(10), 3101–3124 (2020). https://doi.org/10.1007/s10489-020-01697-1

    Article  Google Scholar 

  119. Zhang, J.X., Jiang, H., Lu, S., Chen, X.: DeepDir: a deep learning approach for API directive detection. Sci China Inform Sci. (2021). https://doi.org/10.1007/s11432-019-1520-6

    Article  MathSciNet  Google Scholar 

  120. Shafique, A., Ahmed, J., Boulila, W., Ghandorh, H., Ahmad, J., Rehuman, .M.U.: Detecting the security level of various cryptosystems using machine learning models. IEEE Access. l(9): 9383–9393 (2021). doi: https://doi.org/10.1109/ACCESS.2020.3046528.

  121. Liu, B.Y., Yang, C.F, Hai, L., Chen, Y., Wu, Q.: Security of neuromorphic systems: Challenges an d solutions. 2016 (ISCAS) (2016). doi: https://doi.org/10.1109/ISCAS.2016.7527493.

  122. Pino, R.E., Shevenell, M.J., Cam, H., Pierre, M.: Computational intelligence and neuromorphic computing potential for cybersecurity applications. Spie Defense, Security, & Sensing. (2013).

  123. Sun, J.W., Yang, Q.F., Wang, Y.F.: Dynamical analysis of novel memristor chaotic system and DNA encryption application. Iran. J. Sci. Technol.-Trans. Electr. Eng. 44(1), 449–460 (2020). https://doi.org/10.1007/s40998-019-00239-x

    Article  Google Scholar 

  124. Wang, B., Zou, F.C., Cheng, J.: A memristor-based chaotic system and its application in image encryption. Optik 154, 538–544 (2018). https://doi.org/10.1016/j.ijleo.2017.10.080

    Article  Google Scholar 

  125. Feng, W., Qin, Z.T., Zhang, J., Ahmad M.: Cryptanalysis and improvement of the image encryption scheme based on Feistel network and dynamic DNA encoding.IEEE Access. 9:145459–145470 (2021). doi: https://doi.org/10.1109/ACCESS.2021.3123571.

  126. Wu, Z.M., Pan, P., Sun, C.Y., Zhao, B.: Plaintext-related dynamic key chaotic image encryption algorithm. Entropy (2021). https://doi.org/10.3390/e23091159

    Article  MathSciNet  Google Scholar 

  127. Janani, T., Brindha, M.: A secure medical image transmission scheme aided by quantum representation. J. Inf. Secur. Appl. 59(1–3), 102832 (2021). https://doi.org/10.1016/j.jisa.2021.102832

    Article  Google Scholar 

  128. Mousavi, M., Sadeghiyan, B.: A new image encryption scheme with Feistel like structure using chaotic S-box and Rubik cube based P-box. Multimed. Tools Appl. 80(9), 13157–13177 (2021). https://doi.org/10.1007/s11042-020-10440-4

    Article  Google Scholar 

  129. Ding, Y., Tan, F.Y., Qin, Z., Cao, M.S., Choo, K.K.R., Qin, Z.G.: DeepKeyGen: A deep learning-based stream cipher generator for medical image encryption and decryption. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3062754

    Article  Google Scholar 

  130. Kong, Y.N., Saeedi, E.: The investigation of neural networks performance in side-channel attacks. Artif. Intell. Rev.5 2(1): 607–623 (2019) doi: https://doi.org/10.1007/s10462-018-9640-4 2019.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61973248 and the Key Project of Shaanxi Key Research and Development Program under Grant 2018ZDXM-GY-089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, P., Liu, H., Wu, C. et al. A survey of image encryption algorithms based on chaotic system. Vis Comput 39, 1975–2003 (2023). https://doi.org/10.1007/s00371-022-02459-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02459-5

Keywords

Navigation