Skip to main content

An efficient approach for texture smoothing by adaptive joint bilateral filtering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image decomposition into its structure and texture components is widely used in various image processing and computer vision applications. It is challenging to extract the structure component from an image having intricate texture since it is difficult to extract the structure from the texture that shares similar color intensity or scale. The aim of this work is to smooth the texture component from the image without affecting the significant image structures and to serve the purpose a structure- aware adaptive joint bilateral texture filtering has been employed. Main contribution in this paper is the designing of the guidance image, used in joint bilateral filtering for texture smoothing. To obtain high efficiency by using the proposed method, authors designed a scale map, which provides the size of the spatial kernel at each pixel using the characteristics of the structure and texture components. The experimental section demonstrates the supremacy of the proposed method over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

  2. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27(3), 1–10 (2008)

    Article  Google Scholar 

  3. Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324–2333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \( l_{0} \) gradient minimization. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp. 1–12 (2011)

  5. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Google Scholar 

  6. Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Trans. Graph. (TOG) 32(6), 1–11 (2013)

    Article  Google Scholar 

  7. Su, Z., Luo, X., Deng, Z., Liang, Y., Ji, Z.: Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Trans. Multimedia 15(3), 535–548 (2012)

    Article  Google Scholar 

  8. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM Trans. Graph. (TOG) 33(4), 1–8 (2014)

    Article  Google Scholar 

  9. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: European Conference on Computer Vision, pp. 815–830. Springer (2014)

  10. Ono, S.: \( l_{0} \) gradient projection. IEEE Trans. Image Process. 26(4), 1554–1564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghosh, S., Gavaskar, R.G., Panda, D., Chaudhury, K.N.: Fast scale-adaptive bilateral texture smoothing. IEEE Trans. Circuits Syst. Video Technol. (2019)

  12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures vol. 22. American Mathematical Society (2001)

  14. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20(1), 7–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  17. Chen, L., Fu, G.: Structure-preserving image smoothing with semantic cues. Vis. Comput. 36(10), 2017–2027 (2020)

    Article  Google Scholar 

  18. Fan, Y.-R., Huang, T.-Z., Ma, T.-H., Zhao, X.-L.: Cartoon-texture image decomposition via non-convex low-rank texture regularization. J. Franklin Inst. 354(7), 3170–3187 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Z., He, H.: A customized low-rank prior model for structured cartoon-texture image decomposition. Signal Process. Image Commun. 96, 116308 (2021)

    Article  Google Scholar 

  20. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  21. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)

    Article  Google Scholar 

  22. Weickert, J.: Anisotropic Diffusion in Image Processing vol. 1, pp. 59–60. Teubner Stuttgart (1998)

  23. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  24. Mei, K., Hu, B., Fei, B., Qin, B.: Phase asymmetry ultrasound despeckling with fractional anisotropic diffusion and total variation. IEEE Trans. Image Process. 29, 2845–2859 (2019)

    Article  MATH  Google Scholar 

  25. Riya, Gupta, B., Singh, S.L.: An efficient anisotropic diffusion model for image denoising with edge preservation. Comput. Math. Appl. 93(9), 106–119 (2021)

  26. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. (TOG) 28(3), 1–10 (2009)

    Article  Google Scholar 

  27. He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer Vision, pp. 1–14. Springer (2010)

  28. Paris, S., Hasinoff, S.W., Kautz, J.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. ACM Trans. Graph. 30(4), 68 (2011)

    Article  Google Scholar 

  29. Du, H., Jin, X., Willis, P.J.: Two-level joint local laplacian texture filtering. Vis. Comput. 32(12), 1537–1548 (2016)

    Article  Google Scholar 

  30. Kim, Y., Ham, B., Do, M.N., Sohn, K.: Structure-texture image decomposition using deep variational priors. IEEE Trans. Image Process. 28(6), 2692–2704 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gao, X., Wu, X., Xu, P., Guo, S., Liao, M., Wang, W.: Semi-supervised texture filtering with shallow to deep understanding. IEEE Trans. Image Process. 29, 7537–7548 (2020)

    Article  MATH  Google Scholar 

  32. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. (TOG) 23(3), 664–672 (2004)

    Article  Google Scholar 

  33. Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. (TOG) 23(3), 673–678 (2004)

    Article  Google Scholar 

  34. Su, Z., Luo, X., Artusi, A.: A novel image decomposition approach and its applications. Vis. Comput. 29(10), 1011–1023 (2013)

    Article  Google Scholar 

  35. Liu, C., Feng, Y., Yang, C., Wei, M., Wang, J.: Multi-scale selective image texture smoothing via intuitive single clicks. Signal Process. Image Commun. 116357 (2021)

  36. Lin, T.-H., Way, D.-L., Shih, Z.-C., Tai, W.-K., Chang, C.-C.: An efficient structure-aware bilateral texture filtering for image smoothing. In: Computer Graphics Forum, vol. 35, pp. 57–66. Wiley Online Library (2016)

  37. Song, C., Xiao, C.: Structure-preserving bilateral texture filtering. In: 2017 International Conference on Virtual Reality and Visualization (ICVRV), pp. 191–196. IEEE (2017)

  38. Gavaskar, R.G., Chaudhury, K.N.: Fast adaptive bilateral filtering. IEEE Trans. Image Process. 28(2), 779–790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Riya, Gupta, B., Lamba, S.S.: Structure-aware adaptive bilateral texture filtering. Digital Signal Process. 123, 103–386 (2022)

  40. Gunturk, B.K.: Fast bilateral filter with arbitrary range and domain kernels. IEEE Trans. Image Process. 20(9), 2690–2696 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ghosh, S., Chaudhury, K.N.: On fast bilateral filtering using Fourier kernels. IEEE Signal Process. Lett. 23(5), 570–573 (2016)

    Article  Google Scholar 

  42. Ghosh, S., Nair, P., Chaudhury, K.N.: Optimized Fourier bilateral filtering. IEEE Signal Process. Lett. 25(10), 1555–1559 (2018)

    Article  Google Scholar 

  43. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)

    Article  Google Scholar 

  44. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to forward our sincere thanks to anonymous referees, for their precious time in reviewing this paper and given valuable comments and suggestions to improve the quality of the manuscript. We are grateful to the editor associated with this paper for his comments, cooperation, and support.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhela, R., Gupta, B. & Singh Lamba, S. An efficient approach for texture smoothing by adaptive joint bilateral filtering. Vis Comput 39, 2035–2049 (2023). https://doi.org/10.1007/s00371-022-02462-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02462-w

Keywords