Skip to main content
Log in

A low computational complexity algorithm for real-time salient object detection

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image saliency detection is a process for highlighting the most salient object in an image and presenting the image saliency map. The content of an image is chaotic, including a complex background, low contrast, and an irregular salient object appearance. To overcome these problems, many algorithms have high computational complexity. In this paper, an efficient and fast-performing saliency detection algorithm is proposed, which consists of initiation saliency map generation and saliency map refinement. In the generation stage, the color-based contrast prior and color-based spatial distribution prior are effectively described in the image. Subsequently, two prior results (contrast value and distribution value) are fused to obtain an initial saliency map. In the refinement stage, the initial saliency map is refined by visual focus and an adaptive salient object mask (SOM). Due to the simplicity of the proposed algorithm, the system can detect salient objects in real time. Experimental evaluation on the benchmark shows that the proposed method can achieve sufficient accuracy and reliability while showing the lowest execution time. Compared with other methods, the execution time of the proposed method can achieve 137 frames per second (FPS) for the dataset with average image size 386 ×  292.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Johnson, S., Subha, T.D.: A study on eye fixation prediction and salient object detection in supervised saliency. Mater. Today Proc. 4, 4169–4181 (2017). https://doi.org/10.1016/j.matpr.2017.02.119

    Article  Google Scholar 

  2. Vig, E., Dorr, M., Cox, D.: Large-scale optimization of hierarchical features for saliency prediction in natural images. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition, pp. 2798–2805. IEEE, Columbus, OH, USA (2014)

  3. Kuang, H., Yang, K., Chen, L., Li, Y., Chan, L.L.H., Yan, H.: Bayes Saliency-based object proposal generator for nighttime traffic images. IEEE Trans. Intell. Transp. Syst. 19, 814–825 (2018). https://doi.org/10.1109/TITS.2017.2702665

    Article  Google Scholar 

  4. Gao, F., Ge, Y., Lu, S., Zhang, Y.: On-line vehicle detection at nighttime-based tail-light pairing with saliency detection in the multi-lane intersection. IET Intell. Transp. Syst. 13, 515–522 (2019). https://doi.org/10.1049/iet-its.2018.5197

    Article  Google Scholar 

  5. Tang, J., Yang, G., Sun, Y., Xin, J., He, D.: Salient object detection of dairy goats in farm image based on background and foreground priors. Neurocomputing 332, 270–282 (2019). https://doi.org/10.1016/j.neucom.2018.12.052

    Article  Google Scholar 

  6. Muthuswamy, K., Rajan, D.: Particle filter framework for salient object detection in videos. IET Comput. Vis. 9, 428–438 (2015). https://doi.org/10.1049/iet-cvi.2013.0298

    Article  Google Scholar 

  7. Zeng, Y., Zhuge, Y., Lu, H., Zhang, L.: Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 7223–7233. Cornell University, Ithaca, New York (2019)

  8. Feng, W., Li, X., Gao, G., Chen, X., Liu, Q.: Multi-scale global contrast CNN for salient object detection. Sensors 20, 2656 (2020). https://doi.org/10.3390/s20092656

    Article  Google Scholar 

  9. Ji, Y., Zhang, H., Jonathan, Wu., Q.M.: Salient object detection via multi-scale attention CNN. Neurocomputing 322, 130–140 (2018). https://doi.org/10.1016/j.neucom.2018.09.061

    Article  Google Scholar 

  10. Xu, M., Zhang, H.: Saliency detection with color contrast based on boundary information and neighbors. Vis. Comput. 31, 355–364 (2015). https://doi.org/10.1007/s00371-014-0930-9

    Article  MathSciNet  Google Scholar 

  11. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th ACM international conference on multimedia, pp. 815–824. ACM, New York (2006)

  12. Cheng, M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015). https://doi.org/10.1109/TPAMI.2014.2345401

    Article  Google Scholar 

  13. Su, Z., Zheng, H., Song, G.: Gaussian mixture background for salient object detection. In: Proceedings of the 10th international symposium on image and signal processing and analysis, pp. 165–170. IEEE, Ljubljana, Slovenia (2017)

  14. Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via Cellular Automata. In: Proceedings of the 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp. 110–119. IEEE, Boston, MA, USA (2015)

  15. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.: Saliency Detection via Absorbing Markov Chain. In: Proceedings of the 2013 IEEE international conference on computer vision, pp. 1665–1672. IEEE, Sydney, NSW, Australia (2013)

  16. Wang, G., Zhang, Y., Li, J.: High-level background prior based salient object detection. J. Vis. Commun. Image Represent. 48, 432–441 (2017). https://doi.org/10.1016/j.jvcir.2017.02.004

    Article  Google Scholar 

  17. Pang, Y., Yu, X., Wang, Y., Wu, C.: Salient object detection based on novel graph model. J. Vis. Commun. Image Represent. 65, 102676 (2019). https://doi.org/10.1016/j.jvcir.2019.102676

    Article  Google Scholar 

  18. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition, pp. 2814–2821. IEEE, Columbus, OH, USA (2014)

  19. Fareed, M.M.S., Chun, Q., Ahmed, G., Asif, M.R., Fareed, M.Z.: Saliency detection by exploiting multi-features of color contrast and color distribution. Comput. Electr. Eng. 70, 551–566 (2018). https://doi.org/10.1016/j.compeleceng.2017.08.027

    Article  Google Scholar 

  20. Fu, K., Gong, C., Yang, J., Zhou, Y., Yu-Hua, Gu., I.: Superpixel based color contrast and color distribution driven salient object detection. Signal Process. Image Commun. 28, 1448–1463 (2013). https://doi.org/10.1016/j.image.2013.07.005

    Article  Google Scholar 

  21. Singh, N., Arya, R., Agrawal, R.K.: A convex hull approach in conjunction with Gaussian mixture model for salient object detection. Digit. Signal Process. 55, 22–31 (2016). https://doi.org/10.1016/j.dsp.2016.05.003

    Article  Google Scholar 

  22. Yang, J., Wang, Y., Wang, G., Li, M.: Salient object detection based on global multi-scale superpixel contrast. IET Comput. Vis. 11, 710–716 (2017). https://doi.org/10.1049/iet-cvi.2016.0469

    Article  Google Scholar 

  23. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33, 353–367 (2011). https://doi.org/10.1109/TPAMI.2010.70

    Article  Google Scholar 

  24. Cheng, M., Warrell, J., Lin, W., Zheng, S., Vineet, V., Crook, N.: Efficient Salient Region Detection with Soft Image Abstraction. In: Proceedings of the 2013 IEEE international conference on computer vision, pp. 1529–1536. IEEE, Sydney, NSW, Australia (2013)

  25. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness, focusness and objectness. In: Proceedings of the 2013 IEEE international conference on computer vision, pp. 1976–1983. IEEE, Sydney, NSW, Australia (2013)

  26. Chen, Z.-H., Liu, Y., Xiao, X.-L., Ying, F.-L., Zhang, J., Yuan, Y.-B.: Moving visual focus in salient object segmentation. IET Image Process. 9, 758–769 (2015). https://doi.org/10.1049/iet-ipr.2014.0987

    Article  Google Scholar 

  27. Tong, N., Lu, H., Zhang, L., Ruan, X.: Saliency detection with multi-scale superpixels. IEEE Signal Process. Lett. 21, 1035–1039 (2014). https://doi.org/10.1109/LSP.2014.2323407

    Article  Google Scholar 

  28. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.: Saliency detection via dense and sparse reconstruction. In: Proceedings of the 2013 IEEE international conference on computer vision, pp. 2976–2983. IEEE, Sydney, NSW, Australia (2013)

  29. Annum, R., Riaz, M.M., Ghafoor, A.: Saliency detection using contrast enhancement and texture smoothing operations. Signal Image Video Process. 12, 505–511 (2018). https://doi.org/10.1007/s11760-017-1186-4

    Article  Google Scholar 

  30. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 FPS. In: Proceedings of the 2015 IEEE international conference on computer vision (ICCV), pp. 1404–1412. IEEE, Santiago, Chile (2015)

  31. Lie, M.M.I., Borba, G.B., Vieira Neto, H., Gamba, H.R.: Joint upsampling of random color distance maps for fast salient region detection. Pattern Recognit. Lett. 114, 22–30 (2018). doi:https://doi.org/10.1016/j.patrec.2017.09.010

  32. Lie, M.M.I., Borba, G.B., Neto, H.V., Gamba, H.R.: Fast saliency detection using sparse random color samples and joint upsampling. In: Proceedings of the 2016 29th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), pp. 217–224. IEEE, Sao Paulo, Brazil (2016)

  33. Huang, X., Zhang, Y.J.: 300-FPS salient object detection via minimum directional contrast. IEEE Trans. Image Process. 26, 4243–4254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  35. Borji, A.: What is a salient object? A dataset and a baseline model for salient object detection. IEEE Trans. Image Process. 24, 742–756 (2014). https://doi.org/10.1109/TIP.2014.2383320

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, B.F., Chen, Y.L., Chiu, C.C.: A discriminant analysis based recursive automatic thresholding approach for image segmentation. IEICE Trans. Inf. Syst. E88-D, 1716–1723 (2005). doi:https://doi.org/10.1093/ietisy/e88-d.7.1716

  37. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels compared to state-of-theart superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2281 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by Wen-Kai Tsai and Ting-Hao Hsu. The first draft of the manuscript was written by Wen-Kai Tsai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wen-Kai Tsai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, WK., Hsu, TH. A low computational complexity algorithm for real-time salient object detection. Vis Comput 39, 3059–3072 (2023). https://doi.org/10.1007/s00371-022-02513-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02513-2

Keywords