Abstract
The prior-based blind image deblurring methods have recently achieved good performance. However, many state-of-art algorithms are time-consuming since some nonlinear operators are involved. Presented in this paper is a fast blind image deblurring algorithm which uses the salience map and gradient cepstrum. The inspiration for this work comes from the fact that the extreme values of the salience map of the clear image are more sparse than those of the blurred one. By enforcing the \(L_{0}\) norm constraint to the terms involving salience map and incorporating them into the traditional deblurring framework, an effective optimization scheme is explored. Furthermore, gradient cepstrum is used to adjust the number of iterations in each scale and determine the size of the initial kernel. Experimental results illustrate that our algorithm outperforms the state-of-art deblurring algorithms in both benchmark datasets and real blur scenes. Besides, this algorithm greatly shortens the running time since it restrains excessive iterations and does not involve any nonlinear operators.




















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Joshi, N., Szeliski, R., Kriegman, D.: PSF estimation using sharp edge prediction. In: IEEE Conference on Computer Vision and Pattern Recognition, p 1–8 (2008)
Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2010)
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: IEEE International Conference on Computer Vision, p 157–170 (2010)
Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computer Photography. p 1–8 (2013)
Feng, Q., Fei, H., Wencheng, W.: Blind image deblurring with reinforced use of edges. Vis. Comput. 35(6), 1081–1090 (2019)
Hu, D., Tan, J., Zhang, L., et al.: Image deblurring based on enhanced salient edge selection. Vis. Comput. pp. 1–16 (2021)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. Adv. Neural. Inf. Process. Syst. 22, 1033–1041 (2009)
Fergus, R., Singh, B., Hertzmann, A., et al.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 73 (2008)
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240 (2011)
Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)
Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: European Conference on Computer Vision. pp. 783–798 (2014)
Lai, W., Ding, J., Lin, Y., Chuang, Y.: Blur kernel estimation using normalized color-line prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 64–72 (2015)
Pan, J., Sun, D., Pfister, H., Yang, M.: Blind image deblurring using dark channel prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)
Ren, W., Cao, X., Pan, J.: Image deblurring via enhanced low-rank prior. IEEE Trans. Image Process. 25(7), 3426–3437 (2016)
Yan, Y., Ren, W., Guo, Y., Wang, R., Cao, X.: Image deblurring via extreme channels prior. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 4003–4011 (2017)
Chen, L., Fang, F., Wang, T., Zhang, G.: Blind image deblurring with local maximum gradient prior. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 1742–1750 (2019)
Yu, H., Wang, W., Fan, W.: An adaptive iterative algorithm for motion deblurring based on salient intensity prior. KSII Trans. Internet Inf. Syst. 13(2), 855–870 (2019)
Liu, J., Tan, J., He, L., Ge, X., Hu, D.: Blind image deblurring via local maximum difference prior. IEEE Access 8, 219295–219307 (2020)
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)
Chakrabarti, A.: A neural approach to blind motion deblurring. In: European Conference on Computer Vision. pp. 221–235 (2016)
Schuler, C., Hirsch, M., Harmeling, S.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2016)
Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 257–265 (2017)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)
Kupyn, O., Budzan, V., Mykhailych, M., et al.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Pp. 8183–8192 (2018)
Zhang, J., Pan, J., Ren, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)
Cai, J., Zuo, W., Zhang, L.: Dark and bright channel prior embedded network for dynamic scene deblurring. IEEE Trans. Image Process. 29, 6885–6897 (2020)
Shao, W., Lin, Y., Liu, Y., Wang, L., Li, H.: Gradient-based discriminative modeling for blind image deblurring. Neurocomputing 413, 305–327 (2020)
Xu, L., Cewu, L., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 1–12 (2011)
Li, T., Lii, K.: A joint estimation aproach for two-tone image deblurring by blind deconvolution. ACM Trans. Graph. Pp. 847–858 (2002)
Lee, H., Jung, C., Kim, C.: Blind deblurring of text images using a text-specific hybrid dictionary. IEEE Trans. Image Process. pp. 710–723 (2019)
Cho, H., Wang, J., Lee, S.: Text image deblurring using text-specific properties. In: European Conference on Computer Vision. pp. 524–537 (2012)
Pan, J., Hu, Z., Su, Z.: L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 342–355 (2016)
Cao, X., Ren, W., Zuo, W., et al.: Scene text deblurring using text-specifific multiscale dictionaries. IEEE Trans. Image Process. 24, 3426–3437 (2015)
Yang, H., Zhang, Z., Guan, Y.: Rolling bilateral filter-based text image deblurring. Vis. Comput. 35(11), 1627–1640 (2019)
Pan, J., Hu, Z., Su, Z.: Deblurring face images with exemplars. In: European Conference on Computer Vision. pp. 47–62 (2014)
Yasarla, R., Perazzi, F., Patel, V.: Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE Trans. Image Process. 29, 6251–6263 (2020)
Hu, Z., Cho, S., Wang, J., Yang, M.: Deblurring low-light images with light streaks. In: IEEE Conference on Computer Vision and Pattern Recognition. Pp. 3382–3389 (2014)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4003–4011 (2009)
Köhler, R., Hirsch, M., Mohler, B., et al.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: European Conference on Computer Vision. pp. 27–40 (2012)
Lai, W., Huang, J., Hu, Z., et al.: A comparative study for single image blind deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2019)
Zhang, Z., Chen, H., Yin, X., Deng, J., Li, W.: Dynamic selection of proper kernels for image deblurring: a multistrategy design. Vis. Comput. (2022)
Khan, A., Yin, H.: Arbitrarily shaped Point Spread Function (PSF) estimation for single image blind deblurring. Vis. Comput. 37, 1661–1671 (2021)
Parvaz, R.: Point spread function estimation for blind image deblurring problems based on framelet transform. 2021.
Liu, S., Wang, H., Wang, J., et al.: Automatic blur-kernel-size estimation for motion deblurring. Vis. Comput. 31, 733–746 (2015)
Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM International Conference on Multimedia, Santa Barbara, CA, USA, October 23–27 (2006)
Mingzhu, S., Shuaiqi, L.: PSF estimation via gradient cepstrum analysis for image deblurring in hybrid sensor network. Int. J. Distrib. Sensor Netw. 11, 758034 (2015)
Wang, Z., Bovik, A., Sheikh, H., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2014)
Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: IEEE Asilomar Conference on Signals, Systems, and Computers. 2:1398–1402 (2003)
Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: Proceedings of ICCV, Barcelona, Spain, pp. 495–502. IEEE (2011)
Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. Int. J. Comput Vision 110(2), 185–201 (2014)
Levin, A., Weiss, Y., et al.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, p 2657–2664 (2011)
Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera shake. In: Proceedings of ICCV, Barcelona, Spain, pp. 463-470. IEEE (2011)
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 98(2), 168–186 (2012)
Acknowledgements
We would like to thank the reviewers for their helpful comments and suggestions which greatly improve the quality of the paper. This work was supported by the National Natural Science Foundation of China under Grant 62172135.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, J., Tan, J. & He, L. A fast blind image deblurring method using salience map and gradient cepstrum. Vis Comput 39, 3091–3107 (2023). https://doi.org/10.1007/s00371-022-02515-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02515-0