Skip to main content

Advertisement

Log in

HUDRS: hazy unpaired dataset for road safety

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Dataset is an important aspect for designing a defogging/dehazing framework for road safety. Most of the datasets available in the literature are synthetic in nature, i.e., fog/haze is added to the clear images. The algorithms trained and tested with these synthetic databases work differently in the real-time scenario due to the presence of uncertainty such as density of fog in the real world. In this paper, a new dataset with real-world hazy and clear unpaired images for road safety called Hazy Unpaired Dataset for Road Safety (HUDRS) is presented. HUDRS consists of thousands of foggy and fog-free real-world roadside scenes captured under the natural environmental conditions. These images are captured from Canon Power ShotSX400 IS camera. The performance of the existing and proposed datasets has been evaluated by using prior-based and deep-learning-based dehazing algorithms present in the literature. Experimental results reveal that the visual quality and performance metrics of dehazed images obtained by implementing a visibility restoration algorithm depend on the dataset on which they are trained or validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jiao, S., Wang, L.: Road obstacle detection in bad weather based on deep learning. In: Journal of Physics: Conference Series, vol. 1881, No. 4, p. 042041. IOP Publishing (2021)

  2. Pietrasik, T: Road Traffic Injuries. World Health Organization, 2021. Available: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. [Accessed 22 October 2021] (2021)

  3. Sharma, S.M.: Road traffic accidents in India. Int. J. Adv. Integr. Med. Sci. 1(2), 57–64 (2016)

    Google Scholar 

  4. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tarel, J.P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 4(2), 6–20 (2012)

    Article  Google Scholar 

  6. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense-haze: a benchmark for image dehazing with dense-haze and haze-free images. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1014–1018. IEEE (2019)

  7. Ancuti, C., Ancuti, C.O. and De Vleeschouwer, C.: D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2226–2230. IEEE (2016)

  8. Ancuti, C.O., Ancuti, C., Timofte, R., De Vleeschouwer, C.: O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754–762 (2018)

  9. Xia, R., Chen, Y., Ren, B.: Improved anti-occlusion object tracking algorithm using Unscented Rauch-Tung-Striebel smoother and kernel correlation filter. J King Saud Univ. Comput. Inf. Sci. (2022). https://doi.org/10.1016/j.jksuci.2022.02.004

    Article  Google Scholar 

  10. Chen, Y., Liu, L., Phonevilay, V., Gu, K., Xia, R., Xie, J., Zhang, Q., Yang, K.: Image super-resolution reconstruction based on feature map attention mechanism. Appl. Intell. 51(7), 4367–4380 (2021)

    Article  Google Scholar 

  11. Chen, Y., Zhang, H., Liu, L., Tao, J., Zhang, Q., Yang, K., Xia, R., Xie, J.: Research on image inpainting algorithm of improved total variation minimization method. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-020-02778-2

    Article  Google Scholar 

  12. Chen, Y., Liu, L., Tao, J., Xia, R., Zhang, Q., Yang, K., Xiong, J., Chen, X.: The improved image inpainting algorithm via encoder and similarity constraint. Vis. Comput. 37(7), 1691–1705 (2021)

    Article  Google Scholar 

  13. Chen, Y., Zhang, H., Liu, L., Chen, X., Zhang, Q., Yang, K., Xia, R., Xie, J.: Research on image inpainting algorithm of improved GAN based on two-discriminations networks. Appl. Intell. 51(6), 3460–3474 (2021)

    Article  Google Scholar 

  14. Liu, W., Hou, X., Duan, J., Qiu, G.: End-to-end single image fog removal using enhanced cycle consistent adversarial networks. IEEE Trans. Image Process. 29, 7819–7833 (2020)

    Article  MATH  Google Scholar 

  15. Zhang, Y., Ding, L., Sharma, G.: Hazerd: an outdoor scene dataset and benchmark for single image dehazing. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3205–3209. IEEE (2017)

  16. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, pp. 31–42. Springer, Cham (2014)

  17. Silberman, N., Hoiem, D., Kohli, P. and Fergus, R.: Indoor segmentation and support inference from rgbd images. In: European Conference on Computer Vision, pp. 746–760. Springer, Berlin (2012)

  18. Koschmieder, H.: Theorie der horizontalen Sichtweite. Beitrage zur Physik der freien Atmosphare, pp. 33–53 (1924)

  19. Ancuti, C.O., Ancuti, C., Timofte, R.: NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 444–445 (2020)

  20. Liu, W., Zhou, F., Lu, T., Duan, J., Qiu, G.: Image defogging quality assessment: real-world database and method. IEEE Trans. Image Process. 30, 176–190 (2020)

    Article  Google Scholar 

  21. Hu, Q., Zhang, Y., Zhu, Y., Jiang, Y., Song, M.: Single image dehazing algorithm based on sky segmentation and optimal transmission maps. Vis Comput. (2022). https://doi.org/10.1007/s00371-021-02380-3

    Article  Google Scholar 

  22. Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999–1009 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ngo, D., Lee, G.D., Kang, B.: Improved color attenuation prior for single-image haze removal. Appl. Sci. 9(19), 4011 (2019)

    Article  Google Scholar 

  24. Raikwar, S.C., Tapaswi, S.: Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans. Image Process. 29, 4832–4847 (2020)

    Article  MATH  Google Scholar 

  25. Dhara, S.K., Roy, M., Sen, D., Biswas, P.K.: Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans. Circuits Syst. Video Technol. 31(5), 2076–2081 (2020)

    Article  Google Scholar 

  26. Kuanar, S., Mahapatra, D., Bilas, M., Rao, K.R.: Multi-path dilated convolution network for haze and glow removal in nighttime images. Vis. Comput. 38(3), 1–14 (2021)

    Google Scholar 

  27. Zhang, S., Zhang, J., He, F., Hou, N.: DRDDN: dense residual and dilated dehazing network. Vis. Comput. (2022). https://doi.org/10.1007/s00371-021-02377-y

    Article  Google Scholar 

  28. Li, X., Hua, Z. and Li, J.: Attention-based adaptive feature selection for multi-stage image dehazing. Vis. Comput. 1–16 (2022)

  29. Qin, X., Wang, Z., Bai, Y., Xie, X. and Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11908–11915 (2020)

  30. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383. IEEE (2019)

  31. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157–2167 (2020)

  32. Wu, H., Qu, Y., Lin, S., Zhou, J., Qiao, R., Zhang, Z., Xie, Y., Ma, L.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10551–10560 (2021)

  33. Anon. Preparing Your Dataset for Machine Learning: 10 Basic Techniques That Make Your Data Better. Available at: https://www.altexsoft.com/blog/datascience/preparing-your-dataset-for-machine-learning-8-basic-techniques-that-make-your-data-better/ (Accessed: 28 November 2021) (2021)

  34. Chen, Y., Liu, L., Tao, J., Chen, X., Xia, R., Zhang, Q., Xiong, J., Yang, K., Xie, J.: The image annotation algorithm using convolutional features from intermediate layer of deep learning. Multimed. Tools Appl. 80(3), 4237–4261 (2021)

    Article  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Singh, D., Kumar, V.: A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26(5), 1395–1413 (2019)

    Article  Google Scholar 

  37. Sharma, N., Kumar, V., Singla, S.K.: Single image defogging using deep learning techniques: past, present and future. Arch. Comput. Methods Eng. 28(7), 4449–4469 (2021)

    Article  Google Scholar 

  38. Wang, C., Shen, H.W.: Information theory in scientific visualization. Entropy 13(1), 254–273 (2011)

    Article  Google Scholar 

  39. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, D., Kumar, V.: Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci. J. 65(5), 282–292 (2017)

    Article  Google Scholar 

  41. Singh, D., Kumar, V.: Modified gain intervention filter based dehazing technique. J. Mod. Opt. 64(20), 2165–2178 (2017)

    Article  Google Scholar 

  42. Juneja, A., Kumar, V., Singla, S.K.: A systematic review on foggy datasets: applications and challenges. Arch. Comput. Methods Eng. 29, 1–26 (2021)

    Google Scholar 

  43. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S. and Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6. IEEE (2015)

  44. Bezryadin, S., Bourov, P., Ilinih, D.: Brightness calculation in digital image processing. In: International Symposium on Technologies for Digital Photo Fulfillment, vol. 2007, no. 1, pp. 10–15. Society for Imaging Science and Technology (2007)

Download references

Acknowledgements

This research is supported by the Council of Scientific and Industrial Research (CSIR), India. The sanction number of the scheme is 22(0801)/19/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, A., Singla, S.K. & Kumar, V. HUDRS: hazy unpaired dataset for road safety. Vis Comput 39, 3905–3922 (2023). https://doi.org/10.1007/s00371-022-02534-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02534-x

Keywords

Navigation