Skip to main content
Log in

GANID: a novel generative adversarial network for image dehazing

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a novel algorithm to dehaze a given hazy input image using a generative adversarial network (GAN). The proposed GAN structure uses a Feature Residual Dense combined Network (FRDN) as a generator and a Markovian discriminator (PatchGAN) with additional layers as the discriminator. FRDN is capable of extracting contextual information using Feature Module (FM) in conjunction with the Residual Dense Module, and IMCU enhances collaborative learning which enhances its performance. The inclusion of proposed reality and visibility loss functions along with \(L_1\) loss improves the scene visibility and realness of the dehazed image. The network is trained with images from the benchmark datasets—RESIDE and NTIRE 2021. The proposed technique’s performance is evaluated using various metrics such as PSNR, SSIM, FSIM, FADE, NIQE, and BRISQUE. An average PSNR of 25.701, 32.52, and 33.96 has been obtained with the Indoor Training Set, Synthetic Objective Testing Set indoor, and SOTS outdoor images, respectively. The experimental results reveal that the suggested method’s performance is better compared to other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amaranageswarao, G., Deivalakshmi, S., Ko, S.-B.: Joint restoration convolutional neural network for low-quality image super resolution. Vis. Comput. 38, 31–50 (2022)

    Article  Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Vasluianu, F.-A., Timofte, R., Fu, M., Liu, H., Yu, Y., Chen, J., Wang, K., Chang, J., Wang, X., Liu, J., Xu, Y., Zhang, X., Zhao, M., Zhou, S., Chen, T., Fu, J., Jiang, W., Gao, C., Liu, S., Wang, Y., Guo, J., Li, C., Yan, Q., Zheng, S., Zamir, S.W., Arora, A., Dudhane, A., Khan, S., Hayat, M., Khan, F.S., Shao, L., Zhang, H., Guo, T., Monga, V., Yang, W., Lin, J., Luo, X., Huang, G., Chen, S., Qu, Y., Xu, K., Yang, L., Sun, P., Niu, X., Zheng, J., Ruan, X., Wang, Y., Yang, J., Luo, Z., Wang, S., Xu, Z., Cao, X., Luo, J., Zheng, Z., Ren, W., Wang, T., Chen, Y., Leng, C., Li, C., Cheng, J., Sung, C.-S., Chen, J.-C., Jo, E., Sim, J.-Y., Geethu, M.M., Akhil, K.A., Sreeni, K.G., Jeena, R.S., Zacharias, J., Manu, C.M., Huang, Z., Zhang, B., Zhang, Y., Li, J., Chen, M., Xiao, Q., Su, Q., Han, L., Huang, Y., Prajapati, K., Chudasama, V., Patel, H., Sarvaiya, A., Upla, K., Raja, K., Ramachandra, R., Busch, C., Jing, H., Huang, Z., Fu, Y., Wu, H., Zha, Q., Zhu, Z., Lv, H. Ntire 2021 nonhomogeneous dehazing challenge report. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 627–646 (2021)

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D, Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, 06–11 Aug 2017

  4. Bai, H., Pan, J., Xiang, X., Tang, J.: Self-guided image dehazing using progressive feature fusion. IEEE Trans. Image Process. 31, 1217–1229 (2022)

    Article  Google Scholar 

  5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), abs/1811.08747:1375–1383 (2019)

  7. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  8. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.-H.: Multi-scale boosted dehazing network with dense feature fusion. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), abs/2004.13388:2154–2164 (2020)

  10. Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: FD-GAN: generative adversarial networks with fusion-discriminator for single image dehazing. In: Proceedings of the AAAI, 2020, abs/2001.06968(7):10729–10736 (2020)

  11. Engin, D., Genc, A., Ekenel, H.K.: Cycle-dehaze: enhanced cyclegan for single image dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 938–9388 (2018)

  12. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34, 1–14 (2014)

    Article  Google Scholar 

  13. Golts, A., Freedman, D., Elad, M.: Unsupervised single image dehazing using dark channel prior loss. IEEE Trans. Image Process. 29, 2692–2701 (2020)

    Article  MATH  Google Scholar 

  14. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014)

  15. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  16. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  17. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous task imitation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3459–3468 (2020)

  18. Hsieh, P.-W., Shao, P.-C.: Variational contrast-saturation enhancement model for effective single image dehazing. Signal Process. 192, 108396 (2022)

    Article  Google Scholar 

  19. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

  20. Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2014)

  21. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  22. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4780–4788 (2017)

  23. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: End-to-end united video dehazing and detection. In: AAAI, abs/1709.03919 (2017)

  24. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8202–8211 (2018)

  25. Liu, W., Hou, X., Duan, J., Qiu, G.: End-to-end single image fog removal using enhanced cycle consistent adversarial networks. IEEE Trans. Image Process. 29, 7819–7833 (2020)

    Article  MATH  Google Scholar 

  26. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: attention-based multi-scale network for image dehazing. In: IEEE International Conference on Computer Vision, abs/1908.03245:7314–7323 (2019)

  27. Liu, Z., Xiao, B., Alrabeiah, M., Wang, K., Chen, J.: Generic model-agnostic convolutional neural network for single image dehazing. In: Computer Vision and Pattern Recognition (cs.CV). arXiv:1810.02862 (2018)

  28. Yifan, L., Siyuan, F., Zhang, X., Xie, N.: Denoising Monte Carlo renderings via a multi-scale featured dual-residual GAN. Vis. Comput. 37, 09 (2021)

    Google Scholar 

  29. Ma, T., Tian, W.: Back-projection-based progressive growing generative adversarial network for single image super-resolution. Vis. Comput. 37, 05 (2021)

    Article  Google Scholar 

  30. Mehta, A., Sinha, H., Narang, P., Mandal, M.: Hidegan: a hyperspectral-guided image dehazing gan. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 846–856 (2020)

  31. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784 (2014)

  32. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mittal, A., Soundararajan, R., Bovik, A.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20, 209–212 (2013)

    Article  Google Scholar 

  34. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)

  35. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8152–8160 (2019)

  36. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings (2016)

  37. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision–ECCV 2016, pp. 154–169. Springer, Cham (2016)

    Chapter  Google Scholar 

  38. Soma, P., Jatoth, R.K.: An efficient and contrast-enhanced video de-hazing based on transmission estimation using HSL color model. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02132-3

    Article  Google Scholar 

  39. Sun, Z., Zhang, Y., Bao, F., Wang, P., Yao, X., Zhang, C.: SADnet: semi-supervised single image dehazing method based on an attention mechanism. ACM Trans. Multimed. Comput. Commun. Appl. 18(2), 1–23 (2022)

    Google Scholar 

  40. Tan, R., Pettersson, N., Petersson, L.: Visibility enhancement for roads with foggy or hazy scenes. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 19–24 (2007)

  41. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  42. van Oldenborgh, G.J., Yiou, P., Vautard, R.: On the roles of circulation and aerosols in the decline of mist and dense fog in Europe over the last 30 years. Atmos. Chem. Phys. 10(10), 4597–4609 (2010)

    Article  Google Scholar 

  43. Wang, C., Xing, X., Yao, G., Zhixun, S.: Single image deraining via deep shared pyramid network. Vis. Comput. 37, 07 (2021)

    Article  Google Scholar 

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  45. Wenlong, Z., Yihao, L., Dong, C., Qiao, Y.: Ranksrgan: generative adversarial networks with ranker for image super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1 (2019)

    Google Scholar 

  46. Yang, F., Zhang, Q.: Depth aware image dehazing. Vis. Comput. 38, 1–9 (2021)

    Google Scholar 

  47. Yang, X., Xu, Z., Luo, J. Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press (2018)

  48. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3943–3956 (2020)

    Article  Google Scholar 

  49. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

  50. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

  52. Zhao, S., Zhang, L., Huang, S., Shen, Y., Zhao, S.: Dehazing evaluation: real-world benchmark datasets, criteria, and baselines. IEEE Trans. Image Process. 29, 6947–62 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhou, Z., Rahman Siddiquee, Md.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings, vol. 11045, pp. 3–11 (2018)

  54. Zhou, Z., Rahman Siddiquee, Md.M., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)

    Article  Google Scholar 

  55. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

  56. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chippy M. Manu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manu, C.M., Sreeni, K.G. GANID: a novel generative adversarial network for image dehazing. Vis Comput 39, 3923–3936 (2023). https://doi.org/10.1007/s00371-022-02536-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02536-9

Keywords

Navigation